
the power of machine vision

Solution Guide II-B
Matching

How to Use Matching to Find and Localize Objects, Version 12.0.2

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

Edition 1 October 2010 (HALCON 10.0)
Edition 2 May 2012 (HALCON 11.0)
Edition 3 November 2014 (HALCON 12.0)
Edition 3a July 2015 (HALCON 12.0.1)

Copyright © 2010-2016 by MVTec Software GmbH, München, Germany MVTec Software GmbH

Protected by the following patents: US 7,062,093, US 7,239,929, US 7,751,625, US 7,953,290, US 7,953,291, US
8,260,059, US 8,379,014, US 8,830,229. Further patents pending.

Microsoft, Windows, Windows Vista, Windows Server 2008, Windows 7, Windows 8, Windows 10, Microsoft .NET,
Visual C++, Visual Basic, and ActiveX are either trademarks or registered trademarks of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com/

About This Manual

In a broad range of applications matching is suitable to find and locate objects in images. This Solution
Guide leads you through the variety of approaches that are provided by HALCON.

An introduction to the available matching approaches, including tips for the selection of a specific ap-
proach for a specific application, is given in section 1 on page 7.

Some general topics that are valid for multiple approaches are discussed in section 2 on page 19. These
comprise, e.g., the selection of a proper template, tips for a speed-up, and the use of the results.

Section 3 on page 57 then provides you with detailed information about the individual matching ap-
proaches.

The HDevelop example programs that are presented in this Solution Guide can be found in the specified
subdirectories of the directory %HALCONROOT%.

Contents

1 Introduction 7
1.1 How to Use This Manual? . 7
1.2 What is Matching? . 8
1.3 How to Generally Apply a Matching? . 9
1.4 Which Approaches are Available? . 9
1.5 Which Approach is Suitable in Which Situation? . 10

1.5.1 The Matching Approaches: 2D versus 3D . 10
1.5.2 Decisions for 3D Objects and 2D Objects in 3D Space 11
1.5.3 First Decisions for Orthogonally Imaged 2D Objects 13
1.5.4 Shape-Based vs. Correlation-Based Matching 14
1.5.5 Quick Guide to the Matching Approaches . 15

2 General Topics 19
2.1 Prepare the Template . 19

2.1.1 Reduce the Reference Image to a Template Image 20
2.1.2 Influence of the Region of Interest . 21
2.1.3 Synthetic Models as Alternatives to Template Images 23

2.2 Reuse the Model . 28
2.3 Speed Up the Search . 30

2.3.1 Restrict the Search Space . 30
2.3.2 About Subsampling . 30

2.4 Use the Results of Matching . 33
2.4.1 Results of the Individual Matching Approaches 34
2.4.2 About Transformations . 35
2.4.3 Use the Estimated 2D Position and Orientation 39
2.4.4 Use the Estimated 2D Scale . 49
2.4.5 Use the Estimated 2D Homography . 51
2.4.6 Use the Estimated 3D Pose . 54
2.4.7 About the Score . 56

3 The Individual Approaches 57
3.1 Gray-Value-Based Matching . 57
3.2 Correlation-Based Matching . 58

3.2.1 A First Example . 59
3.2.2 Select the Model ROI . 60

3.2.3 Create a Suitable NCC Model . 61
3.2.4 Optimize the Search Process . 62

3.3 Shape-Based Matching . 64
3.3.1 A First Example . 65
3.3.2 Select the Model ROI . 67
3.3.3 Create a Suitable Shape Model . 69
3.3.4 Optimize the Search Process . 77
3.3.5 Use the Specific Results of Shape-Based Matching 89
3.3.6 Adapt to a Changed Camera Orientation . 91

3.4 Component-Based Matching . 92
3.4.1 A First Example . 93
3.4.2 Extract the Initial Components . 96
3.4.3 Create a Suitable Component Model . 97
3.4.4 Search for Model Instances . 106
3.4.5 Use the Specific Results of Component-Based Matching 110

3.5 Local Deformable Matching . 111
3.5.1 A First Example . 112
3.5.2 Select the Model ROI . 116
3.5.3 Create a Suitable Local Deformable Model . 116
3.5.4 Optimize the Search Process . 119
3.5.5 Use the Specific Results of Local Deformable Matching 122

3.6 Perspective Deformable Matching . 124
3.6.1 A First Example . 125
3.6.2 Select the Model ROI . 127
3.6.3 Create a Suitable Perspective Deformable Model 128
3.6.4 Optimize the Search Process . 132
3.6.5 Use the Specific Results of Perspective Deformable Matching 135

3.7 Descriptor-Based Matching . 136
3.7.1 A First Example . 137
3.7.2 Select the Model ROI . 139
3.7.3 Create a Suitable Descriptor Model . 139
3.7.4 Optimize the Search Process . 142
3.7.5 Use the Specific Results of Descriptor-Based Matching 146

Index 147

Introduction B-7

Chapter 1

Introduction

This section introduces you to HALCON’s matching functionality. In particular, it provides you with an
overview of

• how to use this manual (section 1.1),

• the general meaning of matching (section 1.2),

• how to generally apply a matching (section 1.3 on page 9),

• the available approaches (section 1.4 on page 9), and

• information about which approaches are suitable in which situation (section 1.5 on page 10).

1.1 How to Use This Manual?

If you have no or only little experience with matching applications using HALCON, the following sub-
sections introduce you to matching with HALCON in general and guide you through the most salient
differences between the available matching approaches. Thus, they help you to select the matching ap-
proach that is best suited for your specific application. Further, we recommend to read section 2 on
page 19 before you step into the subsection of section 3 on page 57 that in detail describes your selected
matching approach.

If you are an experienced HALCON user that is familiar with matching and you are looking for further
tips on how to optimize your specific application, it may be sufficient to immediately step into the sub-
section of section 3 on page 57 that describes the matching approach of your choice and possibly have
an additional look on selected subsections of section 2 on page 19, which describe some general topics
that are needed for multiple matching approaches.

In
tr

od
uc

tio
n

B-8 Introduction

1.2 What is Matching?

With matching, HALCON provides a method for the robust location of objects in images, which can
be used for many different applications. To suit the different requirements of the applications, different
approaches are available. All approaches consist of a small set of operators for which only a few parame-
ters have to be adjusted. Further, none of the approaches requires an explicit segmentation of the objects
in the images. Thus, you can successfully locate your objects even if you have no special knowledge in
machine vision.

The main idea of matching is to use a prototype object (template), create a model of it and search the
model in other images. For most matching tasks you obtain the model from a reference image that
shows the object of interest. To suppress other structures or objects that are contained in this image,
the image is reduced to a region of interest (ROI) that only contains the object and which may have
an arbitrary shape. The reduced image is the template image from which the model is created by
an approach-specific operator. Another approach-specific operator uses the obtained model to find the
object in different search images. That is, it searches for image structures that match the model (within
small tolerances).

The different matching approaches provided by HALCON differ amongst others in the image structures
that are used to build the model. Some matching approaches use, e.g., the relations of gray values
to their surrounding (neighborhood) to build a model. Others use, e.g., the shapes of contours (see
figure 1.1). The result of the matching is in each case information about the position, for most approaches
the orientation, and for some approaches also the scale of the found object in the search image.

a) b) c)

Figure 1.1: Matching using shapes of contours: a) the image of an attention sign is used to build a
b) (shape) model in different resolutions (pyramid levels), which is used to c) locate an in-
stance of the model in an image.

1.3 How to Generally Apply a Matching? B-9

1.3 How to Generally Apply a Matching?

Although different matching approaches use different sets of operators, the main proceeding is similar
for all and consists of the following main steps:

1. Create a model for the object of interest.

A model of an object, i.e., the internal data structure describing a searched object, is created using
either a representative reference image of it or a synthetic model. Which way to follow depends
on the selected approach and the available data.

2. Find the model in search images.

Instances of the previously created model are searched in images and their position, in most cases
their orientation, and for some approaches also their scale are returned.

3. Clear the model from memory.

If the model is not needed anymore, it is destroyed to free the allocated memory.

Additional to these essential steps, most approaches provide means to modify a model, reuse it (i.e.,
store it to file and read it from file), and to query information from it.

1.4 Which Approaches are Available?

The matching approaches described in this Solution Guide comprise

• approaches that describe a model by the gray-value relations of the contained pixels:

– the classical gray-value-based matching (section 3.1 on page 57), which is recommended
only in very rare cases, and

– the more powerful correlation-based matching (section 3.2 on page 58), which uses nor-
malized cross correlation (NCC) to match objects or patterns, respectively.

• approaches that describe a model by the shapes of its contours:

– the shape-based matching (section 3.3 on page 64),

– the component-based matching (section 3.4 on page 92), which is designed for the specific
case that several components (rigid parts) of an object move relative to each other,

– the local deformable matching (section 3.5 on page 111), which can handle and return
local deformations of the object and allows to rectify the image part containing the deformed
model, and

– the perspective deformable matching (section 3.6 on page 124), which can handle also
perspective distortions and provides a calibrated version with which also a 3D pose instead
of 2D transformation parameters can be derived.

• an approach that describes a model by a set of significant image points:

In
tr

od
uc

tio
n

B-10 Introduction

– the descriptor-based matching (section 3.7 on page 136) matches a set of so-called interest
points. Similar to the perspective deformable matching it can handle perspective distortions
and provides a calibrated version with which also a 3D pose instead of 2D transformation
parameters can be derived.

Additionally, the so-called point-based matching and the 3D matching are available. For the point-
based matching, corresponding points are used to combine overlapping images. This method is also
called uncalibrated mosaicking. In the broader sense, the search for corresponding points is also a kind
of matching, but the focus of this Solution Guide is on matching of “2D objects”. The 3D matching
consists of different methods and is shortly introduced in the following section, but is also not subject to
this Solution Guide. Please refer to the Solution Guide I, chapter 10 on page 145 for further details on
3D matching.

1.5 Which Approach is Suitable in Which Situation?

The first step when selecting a matching approach is to decide if two or three spatial dimensions are
needed. Afterwards, further criteria like the needed transformation parameters or the object’s appear-
ance within the images can be included into the decision. The following sections provide you with the
background for your decisions. For a quick overview, this background is clearly illustrated in the figures
of section 1.5.5 on page 15.

1.5.1 The Matching Approaches: 2D versus 3D

The different matching approaches are suitable for different applications. Some are suitable only for
2D objects imaged from an orthogonal view, others can also handle perspective distortions, and some
approaches even match 3D shapes in a full 3D space (see figure 1.2). Note that with the term “2D
object” a fixed view on a planar object part is meant and not the actual tangible object, which in reality
is naturally three-dimensional. In contrast, the “3D object” is an object that is viewed from arbitrary
directions.

• 2D objects, imaged from an orthogonal view:

The gray-value-based, correlation-based, shape-based, component-based, and local de-
formable matching can be used to find 2D objects in images. The objects must be taken from an
orthogonal view for the reference image as well as for the search images. Theoretically, you can
also use the perspective deformable or the descriptor-based matching to find orthogonally imaged
2D objects, but as these are not as fast as the strict 2D approaches, they are recommended rather
for the case that the objects must be imaged from a perspective view.

• 2D objects, imaged from a perspective view:

The perspective deformable and the descriptor-based matching can be used to find planar
objects, too. But in addition to the approaches used for the orthogonal view, the objects may be
perspectively deformed. Additionally, if a camera calibration was applied, not only the 2D position
and orientation but the 3D pose of the object can be derived. Although both approaches can be
used also for orthogonally imaged 2D objects, they are recommended rather for the perspective
case, as they are not as fast as the strict 2D approaches.

1.5 Which Approach is Suitable in Which Situation? B-11

• 3D objects:

The 3D matching searches for “real” 3D objects in 2D images. Here, different approaches are
available. For example, for the shape-based 3D matching, no reference image is used to create
the model but a synthetic 3D model, in particular a DXF CAD model, must be provided. If a 3D
object contains a characteristic planar part which is visible in all search images, alternatively the
calibrated perspective 2D approaches, i.e., the perspective deformable or the descriptor-based
matching, can be used, which are more convenient and significantly faster. The 3D matching is
needed only if more than one planar part of the object is needed to differentiate the object from
other image parts.

Note that the 3D matching is not part of this Solution Guide! For further information on 3D matching,
!please refer to the Solution Guide I, chapter 10 on page 145.

perspective deformable matching

arbitrary view (or deformations)
orthogonal view

gray values

model described by
shapes of contours

model described by
a set of points

2D objects

gray−value−based matching
correlation−based matching

3D objects

descriptor−based matching

shape−based matching
component−based matching

model described by

local deformable matching 3D matching

Figure 1.2: Available 2D and 3D matching approaches.

1.5.2 Decisions for 3D Objects and 2D Objects in 3D Space

If you search for a complex 3D object that differs from other objects in all three dimensions (see,
e.g., figure 1.3), the selection of the appropriate matching approach is easy as you have to use the 3D
matching.

If the 3D object contains a unique but planar part that significantly differs from the other structures in
the expected images or if you search for a planar object that may be oriented arbitrarily in the 3D space
you can also use the perspective deformable or the descriptor-based matching, which can handle
perspective distortions of 2D objects. Both approaches are faster and more convenient to use than the 3D
matching.

Which of both perspective approaches to select depends on the specific application. If the object of
interest is expected to be anisotropically scaled in the search images, only the perspective deformable
matching is suitable. If it is expected to be only translated and rotated, both approaches are suitable and

In
tr

od
uc

tio
n

B-12 Introduction

Figure 1.3: 3D object: the third dimension is needed to locate the object.

the appearance of the object in the images must be taken into account. The most important difference be-
tween both approaches is the way the object is modeled. The perspective deformable matching describes
the model by the shapes of the object’s contours. Thus, it is suitable for objects that contain clearly
visible contours (see, e.g., figure 1.4).

Figure 1.4: 3D object: unique parts of the object lie in a plane and can be described by clearly visible
contours.

In contrast, the descriptor-based matching describes the model by interest points. Thus, for objects that
are rather characterized by an arbitrary but fixed texture (see, e.g., figure 1.5), it is most probably to
be preferred.

1.5 Which Approach is Suitable in Which Situation? B-13

Figure 1.5: 3D object: a plane object part is characterized by a specific texture.

1.5.3 First Decisions for Orthogonally Imaged 2D Objects

If you can image planar objects from an orthogonal view and only the 2D transformation parameters
of the found object instances are needed, the perspective deformable or the descriptor-based matching
would lead to the desired result as well, but the approaches that are strictly restricted to two dimensions
are to be preferred as they are significantly faster. The 2D approaches comprise the gray-value-based,
correlation-based, shape-based, component-based, and local deformable matching.

Three of theses approaches are used only in specific situations:

• The gray-value-based matching is suitable only in the very rare case that the application must be
illumination-variant (see section 3.1 on page 57).

• The component-based matching is applied only if the object of interest consists of different
components that move relative to each other (see section 3.4 on page 92 and figure 1.6) and
only if the object is not expected to be scaled in the search images.

• The local deformable matching is applied only if the object of interest is locally deformed, e.g.,
because of a contorted surface (see section 3.5 on page 111 and figure 1.7). In contrast to the other
2D approaches, it returns only the position but no orientation for the found model instance. In
exchange, it allows to rectify the image part containing the deformed object and returns a vector
field that describes the actual deformations.

In most orthogonal 2D cases, you have to select one of the two remaining approaches, i.e., either the
shape-based matching or the correlation-based matching.

In
tr

od
uc

tio
n

B-14 Introduction

Figure 1.6: Object consisting of two components that move relative to each other.

Figure 1.7: Object with local deformations.

1.5.4 Shape-Based vs. Correlation-Based Matching

To decide if the shape-based or the correlation-based matching is more appropriate for your specific
application, you should further investigate the requirements of your application.

For example, you should know which transformation parameters are needed to describe the relation
of the object in the search image to the object described by the model. Will the object be only translated
and rotated or also scaled? If a scaling is needed, correlation-based matching can not be used, but one of
the shape-based matching approaches must be used. Here, you can further choose between approaches
that use uniform scaling or anisotropic scaling, i.e., a scaling with different scaling factors for the x- and
y-direction.

Additionally, the appearance of the object may change from image to image. Reasons can be, e.g., oc-

1.5 Which Approach is Suitable in Which Situation? B-15

clusions, clutter, or illumination changes that may lead to a changing polarity of the object. Furthermore,
the images may be defocused or the object is a complex pattern in front of a complex background, i.e., it
is textured. To get a robust and fast result, the changes of the object’s appearance should be minimized as
much as possible already when imaging the object. Nevertheless, sometimes distortions like occlusions,
clutter, or defocus can not be avoided. These distortions have to be involved into the decision which
approach to use for a specific application.

In particular, shape-based matching should be chosen if occlusions (see, e.g., figure 1.8) or clutter can
not be avoided or if a matching of objects with changing color is applied.

Figure 1.8: Occlusions can be handled by shape-based matching.

In contrast, correlation-based matching is suitable for objects with a random and changing texture or for
objects with a slightly changing shape (see figure 1.9). Additionally, correlation-based matching is to be
preferred when handling strongly defocused images.

Figure 1.9: Changing shapes can be handled by correlation-based matching.

1.5.5 Quick Guide to the Matching Approaches

Figure 1.10 to figure 1.15 cleary summarize the information needed to decide which matching approach
is suitable for a specific application. In particular,

• figure 1.10 summarizes the first coarse decision steps needed to select a matching approach,

In
tr

od
uc

tio
n

B-16 Introduction

• figure 1.11 and figure 1.12 illustrate the transformations that can be handled by the individual
matching approaches,

• figure 1.13 lists the transformation parameters that are returned by the individual matching ap-
proaches, and

• figure 1.14 and figure 1.15 introduce typical changes of the appearance of objects and show which
characteristics of the appearance can be handled by the individual matching approaches.

2D object

component−based matching

gray−value−based matching

shape−based matching

application must be illumination−variant (rare−case)

object consists of components
between which angles and distances
may change, no scaling needed

occlusions, clutter, or color cannot be avoided

rather than clearly visible contours
object is characterized by specific texture

scaling is needed

images are highly defocused

object changes significantly

correlation−based matching

orthogonal view

one planar part of the object sufficient to

All three dimensions needed to

3D object

perspective deformable or

descriptor−based matching

3D matching

perspective view

distinguish the object from other objects

distinguish the object from other objects

about the deformations needed
expected, rectification or information local deformable matching

none of the above stated restrictions or

local deformations of the object’s contour

Figure 1.10: First decision steps when selecting the matching approach.

1.5 Which Approach is Suitable in Which Situation? B-17

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

x,∆ ∆ y

RotationTranslation Similarity Measure
(Scale)

α

Anisotropic Scale

Sx = Sy Sx = Sy

Figure 1.11: Geometric transformations of an object.

Matching Approach Translation Rotation Scaling Scaling
(2D) (2D) (uniform) (anisotropic)

gray-value-based X X - -
correlation-based X X - -
shape-based X X X X
component-based X X - -
local deformable X X X X
perspective deformable X X X X
descriptor-based X X X -

Figure 1.12: Transformations that can be handled by the matching approaches.

Matching Approach Position Angle Scale Scale Projective Pose
(2D) (2D) (uniform) (anisotropic) Transformation (3D)

Matrix
gray-value-based X X - - - -
correlation-based X X - - - -
shape-based X X X X - -
component-based X X - - - -
local deformable X - - - - -
perspective deformable - - - - X X
descriptor-based - - - - X X

Figure 1.13: Transformation parameters returned by the matching approaches.

In
tr

od
uc

tio
n

B-18 Introduction

Occlusion Clutter Illumination Changes
(Missing Contours) (Additional Contours)

Figure 1.14: The object’s appearance may change, e.g., because of (from left to right): occlusions, clutter,
and illumination changes.

Matching Approach Occlusion Clutter Illumination Texture Color Defocus
changes

gray-value-based - - - - - -
correlation-based - - X (only X - X

linear)
shape-based X X X - X X
component-based X X X - X -
local deformable X X X - X -
perspective deformable X X X - X -
descriptor-based X X X X (needed) - -

Figure 1.15: Characteristics of the appearance the matching approaches can cope with.

General Topics B-19

Chapter 2

General Topics

A general proceeding for a matching is to prepare the reference image, e.g., by a preprocessing (if nec-
essary), prepare the template, create the model from it, modify the already existing model (if necessary),
store it to file (if it should be reused), query information from it (which is needed, e.g., when reusing
a previously stored model), restrict the search space to speed up the following matching, search for the
model in (possibly preprocessed) search images, further process the result of the matching, and clear the
model from memory.

In the following, we discuss different general topics that are valid for many matching approaches at
once. In particular,

• section 2.1 shows how to prepare a template,

• section 2.2 on page 28 shows how to reuse a model,

• section 2.3 on page 30 shows how to speed up the search, and

• section 2.4 on page 33 shows how to further process the results of matching.

2.1 Prepare the Template

After an optional preprocessing of the reference image, the first step of the matching is to prepare a
template of the object of interest. From this, a model is derived, which in a later step is used to locate
instances of the object in search images. In most cases, the model is derived from a reference image,
which is reduced to a so-called template image. How to obtain this template image using a region of
interest (ROI) is described in section 2.1.1. The influence of the ROI on the further matching process is
described in section 2.1.2 on page 21. For some matching approaches, a synthetic model can be used
instead of the template image. This can be either a synthetically created template image or an XLD
contour (see section 2.1.3 on page 23).

Te
m

pl
at

e

B-20 General Topics

2.1.1 Reduce the Reference Image to a Template Image

To create a model from a reference image, which is the common way for most matching approaches, the
reference image must be reduced to a template image that contains only those structures of the reference
image that are needed to derive the model.

For this, you select a region within the reference image that shows the part of the image that should serve
as the template or, respectively, from which the model should be derived. After selecting the region, the
domain of the reference image is reduced to an ROI using the operator reduce_domain. The resulting
image is our template image, which is input to one of the approach-specific operators that are provided
for the actual model generation.

Note that a region and therefore also the model can have an arbitrary shape (see the Quick Guide, sec-
tion 2.1.2.2 on page 18 for the exact definition of regions in HALCON). A region can be created in
different ways, as is described in the Solution Guide I, chapter 3 on page 33 and chapter 4 on page 45.
Summarized, a region can be selected, e.g., by the following means:

• A region can be specified by explicitly defining its parameters. That is, HALCON offers mul-
tiple operators to create regions, ranging from standard shapes like rectangles (gen_rectangle2)
or ellipses (gen_ellipse) to free-form shapes (e.g., gen_region_polygon_filled). These
operators can be found in the HDevelop menu Operators . Regions . Creation. To use the
operators, you need the parameters of the shape you want to create, e.g., the position, size, and
orientation of a rectangle or the position and radius of a circle. If these parameters are not explic-
itly known, you can get them using draw operators, i.e., operators that let you draw a shape on the
displayed image and then return the shape parameters. These operators are available, e.g., in the
HDevelop menu Operators . Graphics . Drawing.

• A region can be specified by image processing using, e.g., a blob analysis. Then, the image is
segmented, e.g., using a threshold operator, and the obtained region is further processed to select
only those parts of it having specific features (commonly applied operators are, e.g., connection,
fill_up, and select_shape). In HDevelop, you can determine suitable features and values
using the dialog Visualization . Feature Inspection. More complex regions can be created
using set theory, i.e., by adding or subtracting standard regions using the operators union2 and
difference. That way, e.g., also ring-shaped ROIs can be created like is shown in section 2.1.2.2
on page 22.

Before creating the ROI, it is often suitable to optimize the reference image by a preprocessing. Note
that when using shape-based matching, you can use an HDevelop Assistant that guides you through the
matching process, which includes also the preprocessing of the reference image as well as the creation
of the ROI. How to use the Matching Assistant is described in the HDevelop User’s Guide, section 7.3
on page 269.

Note that also the gray values outside of the ROI have an influence on the model generation. In particular,
the influence is approximately 2NumLevels pixels, with n being the number of pyramid levels. Thus, the
gray values outside of the ROI selected in the reference image should be similar to those that will occur
in the search images.

2.1 Prepare the Template B-21

2.1.2 Influence of the Region of Interest

The ROI used when creating the model determines the quality of the model and thus strongly influences
the success of the later search. If the ROI is selected inappropriately, no or the wrong image structures
are identified as instances of the model in the search images. So, if a matching is not successful or the
result is inaccurate, you should have a very critical look at your ROI and try to enhance it such that the
model represents the object and not the clutter that may be contained in the image. For approaches that
are based on contours like shape-based matching and local or perspective deformable matching, you can
use the operator inspect_shape_model to visually check a potential model. To create a model of good
quality, you must pay attention to the proper selection of the ROI’s center, i.e., the “point of reference”
(see section 2.1.2.1) as well as to the proper selection of the ROI’s outline (see section 2.1.2.2 on page
22).

2.1.2.1 The Point of Reference

The ROI on the one hand influences the quality of the model and thus the general success of the subse-
quent matching. On the other hand, also the numerical results returned by the matching are influenced.
In particular, the center point of the ROI by default acts as the so-called point of reference of the model
for the estimated position, rotation, and scale. Note that if no ROI is selected, the point of reference is
located at the center of the image (see figure 2.1).

Point of Reference
ROI

No ROI selected Appropriate ROI selected

Point of Reference

Figure 2.1: The point of reference depends on the selected ROI, not on the object or its bounding box.

The point of reference also influences the success of the later search, as an object is only found if the
point of reference lies within the image, or more exactly, within the domain of the image (see also
section 3.3.4.1 on page 78). That is, if a point of reference is placed away from the actual object (as
shown, e.g., in figure 2.1, left), a later matching might fail although the object itself is fully contained
in the search image, just because the point of reference is not contained. Thus, it is very important to

!select an appropriate ROI even if the template object is the only object in the image.

Note that for some approaches, after creating a model, you can modify the point of reference. But
as a modified point of reference may lead to a decreased accuracy of the estimated position (see sec-
tion 3.3.4.7 on page 85), if possible, the point of reference should not be changed! Additionally, even

!if you modified the point of reference, the test, if the point of reference lies within the domain of the

Te
m

pl
at

e

B-22 General Topics

search image, is always performed for the original point of reference, i.e., the center point of the initially
selected ROI. Thus, the selection of an appropriate ROI for the template image is important right from
the start.

2.1.2.2 The Outline of the ROI

The quality of the model and thus the accuracy of the result of the matching is influenced strongly by the
model’s outline, in particular, by its shape, size, and orientation.

To allow a good quality of the model, the ROI should be selected so that noise or clutter are minimzed.
This can be obtained, e.g., by “masking” parts of the object that contain clutter. In figure 2.2, e.g., the
model of a capacitor is needed for shape-based matching. To exclude clutter as much as possible, instead
of a circular ROI a ring-shaped ROI is created using the difference between two circular regions.

draw_circle (WindowHandle, ROI1Row, ROI1Column, ROI1Radius)

gen_circle (ROI1, ROI1Row, ROI1Column, ROI1Radius)

gen_circle (ROI2, ROI1Row, ROI1Column, ROI1Radius - 8)

difference (ROI1, ROI2, ROI)

reduce_domain (ModelImage, ROI, ImageROI)

model for full−circle ROI model for ring−shaped ROI

Figure 2.2: Masking the part of a region containing clutter.

Additionally, the accuracy of the location of the object is influenced by the number of contour points
contained in the model. That is, a model with many contour points can be found more accurately than a
model with few contour points (see figure 2.3).

more accurate location

less accurate location

Figure 2.3: Location accuracy: the accuracy is better for models with many contour points.

Furthermore, the accuracy of a matching result can vary for different directions, depending on the di-
rection of the contours that are contained in the model. If, e.g, a model consists mainly of horizontal

2.1 Prepare the Template B-23

contours as depicted in figure 2.4a, a good vertical accuracy can be obtained but the horizontal accuracy
is bad. The model in figure 2.4b contains contours in vertical and horizontal direction. Thus, a sufficient
accuracy in both directions can be obtained. The optimal pattern for a good accuracy in all directions
would be a circular structure as shown in figure 2.4c. So please, carefully select the model so that it con-
tains enough contours that are perpendicular to the direction that you want to inspect or measure after
the matching.

c)

a)

b)

Figure 2.4: Direction of accuracy depends on the direction of the contours: (a) good vertical but bad hori-
zontal accuracy, (b) sufficient accuracy in both direction, (c) optimal pattern for good accuracy
in all directions.

The accuracy of the rotation angle returned by the matching depends on the one hand on the distance
of the contour points from the rotation center and on the other hand on the orientation of the contour in
relation to the rotation center (see figure 2.5). In particular, points that are far away from the rotation
center can be determined more accurately. That is, assuming the same number of model contours, the
orientation of a contour can be determined more accurately if the rotation center lies in the center of the
contour and the contour is elongated.

Figure 2.5: Rotational accuracy: the angle for the (left) compact contour is not determined with the same
accuracy as the angle for the (right) extended model that is oriented radially to the rotation
center.

2.1.3 Synthetic Models as Alternatives to Template Images

For some matching approaches, synthetic models can be used instead of a template image. Three means
to work with synthetic models are available:

• create a synthetic template image,

• use XLD contours directly as models (this can be applied only for specific matching approaches
as listed in section 2.1.3.2 on page 25), or

Te
m

pl
at

e

B-24 General Topics

• use a DXF model to derive XLD contours, which then can be used directly as model (this can be
applied only for specific matching approaches as listed in section 2.1.3.2 on page 25) or which can
be used to create a synthetic template image.

2.1.3.1 Synthetic Template Image

Synthetic template images are suitable mainly for correlation-based matching and all 2D approaches that
are based on contours, i.e., shape-based, component-based, local deformable, and perspective deformable
matching.

Depending on the application it may be difficult to create a suitable model from a reference image
because no image is available that contains a perfect, easy to extract instance of the object. An example
of such a case is depicted in figure 2.6 for the location of capacitors. The task seems to be simple at first,
as the capacitors are represented by prominent bright circles on a dark background. But the shape model
that is derived from a circular ROI is faulty, because inside and outside the circle the image contains
clutter, i.e., high-contrast points that are not part of the object. A better result is obtained for a ring-
shaped ROI that “masks” the parts of the object containing clutter. Nevertheless, the model is still not
perfect, because parts of the circle are missing and the model still contains some clutter points.

In such a case, it is often better to use a synthetic template image. How to create such an image for
the capacitors is explained below. To follow the example actively, start the HDevelop program solu-

tion_guide\matching\synthetic_circle.hdev.

Step 1: Create an XLD contour

First, we create a circular region using the operator gen_ellipse_contour_xld. You can determine a
suitable radius by inspecting the image with the HDevelop dialog Visualization . Zoom Window or
more conveniently create the region using the ROI tool in HDevelop’s graphics window.

RadiusCircle := 43

SizeSynthImage := 2 * RadiusCircle + 10

gen_ellipse_contour_xld (Circle, SizeSynthImage / 2, SizeSynthImage / 2, 0, \

RadiusCircle, RadiusCircle, 0, 6.28318, \

'positive', 1.5)

Note that the synthetic image should be larger than the region because also pixels outside the region are
used when creating the image pyramid for the shape-based matching, which in this case is the selected
matching approach (for image pyramids, see section 2.3.2 on page 30).

Step 2: Create an image and insert the XLD contour

Then, we create an empty image using the operator gen_image_const and insert the XLD contour with
the operator paint_xld. In figure 2.7a the resulting image is depicted.

gen_image_const (EmptyImage, 'byte', SizeSynthImage, SizeSynthImage)

paint_xld (Circle, EmptyImage, SyntheticModelImage, 128)

Step 3: Create the model

The model is created from the synthetic image.

2.1 Prepare the Template B-25

model for ring−shaped ROI

model for full−circle ROI

Figure 2.6: Locating capacitors using (top) a circular ROI or (bottom) a complex ring-shaped ROI to derive
the model.

create_scaled_shape_model (SyntheticModelImage, 'auto', 0, 0, 0.01, 0.8, \

1.2, 'auto', 'none', 'use_polarity', 30, 10, \

ModelID)

Figure 2.7b shows the corresponding model region and figure 2.7c shows the search results. Note how
the image itself, i.e., its domain, acts as the ROI in this example.

2.1.3.2 Models from XLD Contours

For the shape-based matching and the local and perspective deformable matching you do not have
to create a synthetic template image to derive a model from an XLD contour, because you can
use the XLD contour directly as model. Then, e.g., for shape-based matching, you do not have

Te
m

pl
at

e

B-26 General Topics

a) b)

c)

Figure 2.7: Locating capacitors using a synthetic model: a) paint region into synthetic image; b) corre-
sponding model; c) result of the search.

to provide an image, select an ROI, and call one of the operators create_shape_model, cre-

ate_scaled_shape_model, or create_aniso_shape_model to build the model. Instead, you simply
call one of the operators create_shape_model_xld, create_scaled_shape_model_xld, or cre-
ate_aniso_shape_model_xld with the XLD contour as input. An example for the creation of a shape
model from circular XLD contours is given by the HDevelop example program examples\hdevelop\

Matching\Shape-Based\create_shape_model_xld.dev:

gen_circle_contour_xld (ContCircle, 300, 300, MeanRadius, 0, 6.28318, \

'positive', 1)

create_shape_model_xld (ContCircle, 'auto', 0, 0, 'auto', 'auto', \

'ignore_local_polarity', 10, ModelID)

The proceeding for the local and perspective deformable matching is applied accord-
ingly. There, you apply the operators create_local_deformable_model_xld for the lo-
cal deformable matching and create_planar_uncalib_deformable_model_xld or cre-

ate_planar_calib_deformable_model_xld, respectively, for perspective deformable matching.

Note that when creating the model from XLD contours, there is no information about the polarity of the
model available (see figure 2.8, left). Thus, when creating the model the parameter Metric must be set
so that the polarity is locally ignored. As this leads to a dramatically slow search, HALCON provides
means to determine the polarity for a found model instance. That is, you apply the slow search once
only in a search image with a polarity that is representative for your set of search images, project the
model contours to the found position within the search image (see figure 2.8, right), and call the operator
set_shape_model_metric for shape-based matching, set_local_deformable_model_metric

for local deformable matching, and set_planar_uncalib_deformable_model_metric or
set_planar_calib_deformable_model_metric, respectively, for perspective deformable matching.
Then, polarity information is stored in the model and for the following search passes the parameter

2.1 Prepare the Template B-27

Metric can be set to a more suitable value, e.g., to ’use_polarity’. This proceeding is strongly
recommended for a fast and robust search.

find_shape_model (Image, ModelID, 0, 0, 0.7, 0, 0, 'least_squares', 0, 0.9, \

Row, Column, Angle, Score)

... accessing the indices of the matches

... that represent suitable drill holes

vector_angle_to_rigid (0, 0, 0, Row[HoleIndices[0]], Column[HoleIndices[0]], \

Angle[HoleIndices[0]], HomMat2D)

set_shape_model_metric (Image, ModelID, HomMat2D, 'use_polarity')
for Index := 2 to 9 by 1

read_image (Image, 'brake_disk/brake_disk_part_' + Index$'02d')
find_shape_model (Image, ModelID, 0, 0, 0.7, 0, 0, 'least_squares', 0, \

0.9, Row, Column, Angle, Score)

endfor

For further information about the polarity of models for shape-based matching, please refer to sec-
tion 3.3.3.5 on page 75.

Figure 2.8: (left) synthetic XLD model; (right) model projected into a representative search image to
determine the polarity of the model.

2.1.3.3 Models from DXF Files

The models needed for matching can also be derived from DXF files. In particular, you can extract
the XLD contours from the DXF file using the operator read_contour_xld_dxf and then either use
the XLD contours to create a synthetic image or, if the selected matching approach allows it (see sec-
tion 2.1.3.2 on page 25), use the obtained XLD contours directly as model.

An example for the creation of a synthetic template image for shape-based match-
ing using the XLD contours extracted from an DXF file is given by the HDevelop
example program examples\hdevelop\Applications\Position-Recognition-2D\

pm_multiple_dxf_models.dev. Examples for the creation of perspective deformable mod-
els using the XLD contours extracted from DXF files directly as models are given by the

Te
m

pl
at

e

B-28 General Topics

HDevelop example programs create_planar_calib_deformable_model_xld.dev and cre-

ate_planar_uncalib_deformable_model_xld.dev (see figure 2.9) in the directory examples\

hdevelop\Matching\Deformable.

Figure 2.9: (left) synthetic XLD model accessed from a DXF model; (right) model found in a search image.

2.2 Reuse the Model

If you want to reuse created models or training results in other HALCON applications, all you need to
do is to store the relevant information in files and then read them again.

The HDevelop example program solution_guide\matching\reuse_model.hdev shows exemplar-
ily how to reuse a model for a uniformly scaled shape-based matching. First, the model is created.

create_scaled_shape_model (ImageROI, 'auto', -rad(30), rad(60), 'auto', 0.6, \

1.4, 'auto', 'none', 'use_polarity', 60, 10, \

ModelID)

Then, the model is stored in a file using the operator write_shape_model. With the model, HALCON
automatically saves the XLD contour, the point of reference, and the parameters that were used in the
call to create_scaled_shape_model.

write_shape_model (ModelID, ModelFile)

Note that the model region, i.e., the domain of the image, is not saved when storing the model. Thus, if
you want to reuse it, too, you can store the template image with write_image.

ModelRegionFile := 'model_region_nut.png'
write_image (ImageROI, 'png', 0, ModelRegionFile)

In the example program, the shape model is cleared to represent the start of another application.

2.2 Reuse the Model B-29

clear_shape_model (ModelID)

The model, the XLD contour, and the point of reference are now read from the files using the op-
erator read_shape_model. Then, the XLD contours and the point of reference are accessed using
get_shape_model_contours and get_shape_model_origin, respectively. They are needed to visu-
alize the result of the matching after a later call to find_scaled_shape_model. Furthermore, the pa-
rameters that were used to create the model are accessed with the operator get_shape_model_params,
because some of them are needed as input for find_scaled_shape_model.

read_shape_model (ModelFile, ReusedModelID)

get_shape_model_contours (ReusedShapeModel, ReusedModelID, 1)

get_shape_model_origin (ReusedModelID, ReusedRefPointRow, ReusedRefPointCol)

get_shape_model_params (ReusedModelID, NumLevels, AngleStart, AngleExtent, \

AngleStep, ScaleMin, ScaleMax, ScaleStep, Metric, \

MinContrast)

The previously stored model region can be read with read_image and the corresponding domain is
accessed by get_domain.

read_image (ImageModelRegion, 'model_region_nut.png')
get_domain (ImageModelRegion, DomainModelRegion)

Now, the model can be used as if it was created in the application itself.

find_scaled_shape_model (SearchImage, ReusedModelID, AngleStart, \

AngleExtent, ScaleMin, ScaleMax, 0.65, 0, 0, \

'least_squares', 0, 0.8, RowCheck, ColumnCheck, \

AngleCheck, ScaleCheck, Score)

for i := 0 to |Score| - 1 by 1

vector_angle_to_rigid (ReusedRefPointRow, ReusedRefPointCol, 0, \

RowCheck[i], ColumnCheck[i], AngleCheck[i], \

MovementOfObject)

hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i], \

RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)

affine_trans_contour_xld (ReusedShapeModel, ModelAtNewPosition, \

MoveAndScalingOfObject)

dev_display (ModelAtNewPosition)

endfor

clear_shape_model (ModelID)

Note that the information that is stored in a model and that can be queried after reading a model from
file depends on the selected approach. Similar to shape-based matching, many of the approaches provide
operators to query the origin of the model and several parameters that were used to create or modify the
model. Some approaches additionally provide operators to query the contour of the model or in case of
the descriptor-based matching the interest points that define the model.

S
pe

ed
-U

p

B-30 General Topics

2.3 Speed Up the Search

You can speed up the search by

• restricting the search space (section 2.3.1) and

• using subsampling (section 2.3.2).

2.3.1 Restrict the Search Space

An important concept in the context of finding objects is that of the so-called search space. Quite literally,
this term specifies where to search for the object. Depending on the matching approach, this space
encompasses not only the two dimensions of the image, but also other parameters like the possible range
of scales and orientations or the question of how much of the object must be visible. The more you can
restrict the search space, the faster the search will be.

The most obvious way to restrict the search space, which is suitable for all matching approaches, is to
apply the operator that is used to find the model in an image to an ROI instead of the whole image.

Other parameters that can be used to restrict the search space depend on the specific matching approach.
Some approaches are already very strict, others allow different changes of the object like rotation or scale
and thus a restriction of the search space is strongly recommended. Shape-based matching, e.g., allows
arbitrary orientation and scale changes as well as occlusions of the model instances in the search images.
Thus, for shape-based matching also the range of orientation and scale as well as the visibility, i.e., the
amount of allowed occlusions of the model instance in the image, should be restricted to speed up the
search (see section 3.3.4 on page 77).

2.3.2 About Subsampling

For all matching approaches except the descriptor-based matching a so-called image pyramid can be used
to speed up the search. In some approaches, the image pyramid is created for the search image as well as
for the template image The pyramid consists of the original, full-sized image and a set of downsampled
images. For example, if the original image (first pyramid level) is of the size 600x400, the second level
image is of the size 300x200, the third level 150x100, and so on. The object is then searched first on the
highest pyramid level, i.e., in the smallest image. The results of this fast search are then used to limit the
search in the next pyramid image, whose results are used on the next lower level until the lowest level is
reached. Using this iterative method, the search is both fast and accurate. Figure 2.10 depicts four levels
of an example image pyramid together with the corresponding model regions.

Note that when images are downsampled, different “events” occur. Primarily, specific structures disap-
pear in higher pyramid levels. As shown in figure 2.10, thin structures disappear sooner than thick ones.
Note that “thin structures” includes the different structures of the actual model but also the distances
between them. Thus, small structures of the model may disappear, but they can just as well be merged if
the distances between them are small. Additionally, the boundaries of structures blur in higher pyramid
levels and their contrast decreases. In figure 2.11, this effect is shown for a one pixel wide line.

For more complex patterns, this may lead to the disappearance of a pattern or even to the creation of
a new pattern. Examples for the disappearance of patterns that are caused by the blurring of structures

2.3 Speed Up the Search B-31

Figure 2.10: The image and the model region at four pyramid levels (original size and zoomed to equal
size).

Figure 2.11: In the pyramid, a (left) one pixel wide high contrast line blurs to a (right) broader line with a
lower contrast.

S
pe

ed
-U

p

B-32 General Topics

are given for the small characters in figure 2.10, for a regular grid of one pixel wide high contrast lines
in figure 2.12, and for a pattern that consists of high contrast rectangles with a distance of one pixel
in figure 2.13. The latter example also shows that new patterns can be created within the pyramid.
Before the pattern is blurred to a homogeneous area, a different regular pattern is created. Additionally,
it is possible that new structures appear because the region of interest was selected too large and thus,
contours that were not part of the model in the first pyramid level become part of the model in a higher
level.

Figure 2.12: In the pyramid, a (left) grid with one pixel wide high contrast lines becomes a (right) homo-
geneous gray-value area.

Level 1 Level 2 Level 3 Level 4 Level 5

White rectangles with one pixel distance

Figure 2.13: In the pyramid, a (top) regular stucture of rectangles with distances of one pixel shows the
following behavior: (bottom) level 1 and 2 still represent the correct model contours, level
3 and 4 produce new regular patterns, and in level 5 a homogeneous gray-value area is
obtained.

The blurring of structures induces also that besides the size also the contrast determines if a structure
is still contained in a higher pyramid level or not. After the downsampling, a high contrast structure of

2.4 Use the Results of Matching B-33

sufficient size may still have enough contrast to be recognized, whereas a structure of the same size but
with a low contrast can not be distinguished from the background anymore. For example, in figure 2.14
the large but bright ’V’ of the ’MVTec’ logo disappears in front of the bright background at a pyramid
level in which the large high contrast characters are still contained. Thus, to benefit from the speed-up
obtained by a subsampling, the images should have as much contrast as possible.

Figure 2.14: In the pyramid, a part of the model with a low contrast (the ’V’ of MVTec) disappears.

2.4 Use the Results of Matching

The main goal of matching is to locate objects in images, i.e., above all get the position and in most cases
also the orientation of a model instance in an image. Furthermore, many approaches return additional
information like the scale of the object or a score that evaluates the quality of the returned object location.
In the following sections

• the individual results of the different matching approaches are listed (section 2.4.1),

• the different types of transformations that can be handled with HALCON and that are often needed
to further process the results of matching are introduced (section 2.4.2 on page 35),

• the different uses of the most common results, i.e., the estimated position and orientation, are
described (section 2.4.3 on page 39),

• the use of the scale is introduced (section 2.4.4 on page 49),

• the use of a 2D projective transformation matrix (2D homography) is introduced (section 2.4.5 on
page 51),

• the use of a 3D pose is introduced (section 2.4.6 on page 54), and

• the returned score is shortly discussed (section 2.4.7 on page 56).

U
se

R
es

ul
ts

B-34 General Topics

2.4.1 Results of the Individual Matching Approaches

To locate objects in images, information like the position and orientation of the searched objects must
be returned by the matching. This information is available in different representations, depending on
the selected matching approach. That is, for a strict 2D matching the position and orientation are re-
turned separately, i.e., the position consists of a row and a column value and the orientation consists of
a single value describing the angle. In contrast, the uncalibrated perspective approaches return the posi-
tion and orientation together in a projective transformation matrix (2D homography) and the calibrated
perspective approaches return them together in a 3D pose. Besides the position and orientation, many
approaches return further information like the scale of the found object or information about the quality
of the match, which is called score.

The results of the individual matching approaches are listed below. How to further process them is
described in the following sections.

Matching Approach Operator(s) and Results

gray-value-based best_match, best_match_mg, best_match_pre_mg:
matching Position of the best match and the average deviation of the gray

values from the best match
best_match_rot, best_match_rot_mg:
Position and rotation of the best match and the average deviation
of the gray values from the best match.
fast_match, fast_match_mg:
All image points for which the matching error is within a
specified tolerance.

correlation-based find_ncc_model:
matching Position, rotation, and score of the found model.
shape-based find_shape_model:
matching Position, rotation, and score of the found model.

find_shape_models:
Positions, rotation angles, and scores for multiple models, and
the information to which model each instance belongs.
find_scaled_shape_model:
Position, rotation, a uniform scaling factor, and score of the
found model
find_scaled_shape_models:
Positions, rotation angles, uniform scaling factors, and scores for
multiple models, and the information to which model each instance
belongs.
find_aniso_shape_model:
Position, rotation angle, scaling factors for row and column
direction, and score of the found model.
find_aniso_shape_models:
Positions, rotation angles, scaling factors in row and column
direction, and scores for multiple models, and the information
to which model each instance belongs.

2.4 Use the Results of Matching B-35

component-based find_component_model:
matching Start and end index for each found instance of the component model,

a score for the found instances of the component model, positions
and angles of the found component matches, the scores for the
found matches, and the indices of the found components.

local deformable find_local_deformable_model:
matching Position, vector field, rectified image (part), contours of the

deformed object, and score of the found model
perspective deformable find_planar_calib_deformable_model:
matching 3D pose, six mean square deviations or the 36

covariances of the 6 pose parameters, and score.
find_planar_uncalib_deformable_model:
2D homography and score.

descriptor-based find_calib_descriptor_model:
matching 3D pose and score.

find_uncalib_descriptor_model:
2D homography and score.

2.4.2 About Transformations

HALCON provides operators for different types of transformations. For the strict 2D matching ap-
proaches, 2D affine transformations are available, which allow to, e.g., translate, rotate, or scale 2D
objects (see section 2.4.2.1). For the uncalibrated perspective matching approaches, 2D projective trans-
formations are provided, which are applied in the context of perspective views (see section 2.4.2.2 on
page 37). Finally, for the calibrated perspective matching approaches, 3D affine transformations are
available (see section 2.4.2.3 on page 38).

2.4.2.1 2D Affine Transformations

“Affine transformation” is a technical term in mathematics describing a certain group of transformations.
Figure 2.15 shows the types that occur, e.g., in the context of the shape-based matching: An object can
be translated (moved) along the two axes, rotated, and scaled. In figure 2.15d, all three transformations
were applied in a sequence.

Note that for the rotation and the scaling a fixed point exists, around which the transformation is per-
formed. It corresponds to the point of reference described in section 2.1.2.1 on page 21. In figure 2.15b,
e.g., the IC is rotated around its center, in figure 2.15e around its upper right corner. The point is called
fixed point because it remains unchanged by the transformation.

The transformation can be thought of as a mathematical instruction that defines how to calculate the
coordinates of object points after the transformation. Fortunately, you need not worry about the math-
ematical part. HALCON provides a set of operators that let you specify and apply transformations in a
simple way.

HALCON allows to transform pixels, regions, images, and XLD contours by provid-
ing the operators affine_trans_pixel, affine_trans_region, affine_trans_image, and
affine_trans_contour_xld. The transformation in figure 2.15d corresponds to the line

U
se

R
es

ul
ts

B-36 General Topics

e)

column / y

row / x

c) d)

f)

a) b)

Figure 2.15: Typical affine transformations: a) translation along two axes; b) rotation around the IC center;
c) scaling around the IC center; d) combining a, b, and c; e) rotation around the upper right
corner; f) scaling around the right IC center.

affine_trans_region (IC, TransformedIC, ScalingRotationTranslation, \

'nearest_neighbor')

The parameter ScalingRotationTranslation is a so-called homogeneous transformation matrix that
describes the desired transformation. You can create this matrix by adding simple transformations step
by step. First, an identity matrix is created with hom_mat2d_identity.

hom_mat2d_identity (EmptyTransformation)

Then, the scaling around the center of the IC is added with hom_mat2d_scale.

hom_mat2d_scale (EmptyTransformation, 0.5, 0.5, RowCenterIC, ColumnCenterIC, \

Scaling)

Similarly, the rotation and the translation are added with hom_mat2d_rotate and
hom_mat2d_translate.

2.4 Use the Results of Matching B-37

hom_mat2d_rotate (Scaling, rad(90), RowCenterIC, ColumnCenterIC, \

ScalingRotation)

hom_mat2d_translate (ScalingRotation, 100, 200, ScalingRotationTranslation)

Please note that in these operators the coordinate axes are labeled with x and y instead of Row and
Column! Figure 2.15a clarifies the relation.

Transformation matrices can also be constructed by a sort of “reverse engineering”. In other words, if the
result of the transformation is known for some points of the object, you can determine the corresponding
transformation matrix. If, e.g., the position of the IC center and its orientation after the transformation is
known, you can get the corresponding matrix via the operator vector_angle_to_rigid and then use
this matrix to compute the transformed region.

vector_angle_to_rigid (RowCenterIC, ColumnCenterIC, 0, \

TransformedRowCenterIC, TransformedColumnCenterIC, \

rad(90), RotationTranslation)

affine_trans_region (IC, TransformedIC, RotationTranslation, \

'nearest_neighbor')

If a pixel, image, or contour should be transformed, the proceeding is similar, but instead of
affine_trans_region, you apply the operator affine_trans_pixel, affine_trans_image, or
affine_trans_contour_xld, respectively (see, e.g., section 2.4.3.1 on page 39).

2.4.2.2 2D Projective Transformations

A 2D projective transformation matrix describes a perspective projection as illustrated in figure 2.16.
It consists of 3×3 values. Note that if the last row contains the values [0,0,1], it corresponds to a
homogeneous transformation matrix, i.e., it describes a 2D affine transformation, which is a special case
of the 2D projective transformation.

World Plane

Image Plane

Figure 2.16: Perspective projection.

HALCON provides several operators to apply projective transformations. Similar to the affine
transformation, with a projective transformation you can transform different HALCON structures

U
se

R
es

ul
ts

B-38 General Topics

like pixels (projective_trans_pixel), regions (projective_trans_region), images (projec-
tive_trans_image), and XLD contours (projective_trans_contour_xld). But now, also perspec-
tive deformations are considered by the transformation. An example for a 2D projective transformation
is described in more detail in section 2.4.5 on page 51.

Note that in the context of matching, projective transformation matrices are even easier to handle than
affine transformations, as you do not need to create a transformation matrix from corresponding points or
by adding several transformation steps. Instead, the projective transformation matrix is directly returned
by one of the operators that are used for the uncalibrated matching of perspectively distorted objects, and
can be directly used to apply one of the above stated transformations.

2.4.2.3 3D Affine Transformations

Detailed information about 3D affine transformations can be found in the Solution Guide III-C. Here, we
shortly summarize the information needed to overlay the results of the calibrated perspective matching
approaches with structures obtained from the reference image.

HALCON’s 3D affine transformation mainly is a transformation from a 3D point to another 3D point.
Thus, in contrast to the 2D affine or 2D projective transformation, it cannot transform regions, images,
or XLD contours. Thus, any 2D structure that you want to transform, e.g., for the visualization of the
matching result, must be split into points before applying the transformation. Additionally, the points
must be available in the world coordinate system (WCS) (step 1 in figure 2.17).

search imagereference image

2: Apply 3D affine transformation in the WCS

reference image into
1: Transform point from

the WCS

3: Project the point into the
search image

Figure 2.17: Different steps of the transformations needed in the context of calibrated perspective match-
ing.

To transform a point from the reference image into the WCS, you need the camera parameters and the
reference pose of the model, which describes the relation between the object and the camera. Both are
typically obtained by a camera calibration (see Solution Guide III-C, section 3.2 on page 68). The image
points can then be transformed into the WCS using image_points_to_world_plane. Alternatively,
you can transform a contour to the plane with z = 0 of the WCS using contour_to_world_plane_xld
and then get the individual points of it using get_contour_xld. Note that the latter operator returns
only tuples for the x and the y coordinates. Thus, a further tuple for the z coordinates must be created
using gen_tuple_const. This tuple must have the same number of elements as the other two tuples
and all elements must be set to the value 0.

2.4 Use the Results of Matching B-39

If the individual points are available in the WCS, they can be transformed with
affine_trans_point_3d using a 3D homogeneous transformation matrix (step 2 in figure 2.17). In
the context of calibrated perspective matching, the result of the matching is a 3D pose that can be trans-
formed into the corresponding 3D homogeneous transformation matrix using pose_to_hom_mat3d.
It describes the relations between the world coordinates of the model and those of the model instance
found in a specific match.

After transforming the 3D points with affine_trans_point_3d, you can project them from the WCS
into the search image using project_3d_point (step 3 in figure 2.17 on page 38). These image points
can then be used to reconstruct and display the initial structure using, e.g., gen_contour_polygon_xld
for the reconstruction of a contour. An example for a 3D affine transformation is described in more detail
in section 2.4.6 on page 54.

2.4.3 Use the Estimated 2D Position and Orientation

The estimated position and orientation (2D pose) for a model instance of a strict 2D matching can be
used in different ways. They can be used, e.g.,

• to display the found instance (section 2.4.3.1 for a single match or section 3.3.5.1 on page 89 for
multiple matches),

• to align ROIs for other inspection tasks, e.g., measuring (section 2.4.3.2 on page 42), or

• to transform the search image so that the object is positioned as in the template image (sec-
tion 2.4.3.3 on page 46).

All of these applications can be realized with a few lines of code using the affine transformations that
were explained in section 2.4.2.1 on page 35.

For most matching approaches, the position and orientation returned by the matching is determined rela-
tive to the model. That is, no absolute position but the distance to the point of reference is returned. The
point of reference is defined by the center of the ROI that was used to create the model (see figure 2.18a).
By default, the point of reference for the model is moved to the coordinates (0,0). But even then,
as different tasks in HALCON need different image coordinate systems (the positions for pixel-precise
regions differ from those used for subpixel-precise XLD contours by 0.5 pixels, see page 44), the esti-

!mated position returned by the matching can not be used directly but is optimized for the creation
of the transformation matrices that are used to apply the applications described above. Additionally, in
the template image the object is taken as not rotated, i.e., its angle is 0, even if it seems to be rotated as,
e.g., in figure 2.18b.

2.4.3.1 Display the Matches

In many cases, especially during the development of a matching application, it is useful to display the
matching results in the search image. This can be realized by different means. If the model is repre-
sented by a contour, we recommend to overlay the XLD contour on the search image, because XLD
contours can be transformed more precisely and quickly than regions. Additionally, by displaying the
contour of the model not only the position and orientation of the found model instance but also the
deviation from the model’s shape can be visualized.

U
se

R
es

ul
ts

B-40 General Topics

Angle

Angle = 0

Column Column

Row

Row

Row

Column Column

Row

Angle

Angle = 0

reference image

reference image search image

search image
a)

b)

Figure 2.18: The position and orientation of a match: a) The center of the ROI acts as the default point of
reference; b) In the template image, the orientation is always 0.

If no contour is available, we recommend to overlay the ROI that was used to create the model on the
search image. In some cases, the additional visualization of points is suitable. For example, for the
descriptor-based matching, the interest points of the model or a found model instance can be queried as
described in section 3.7.3 on page 139 and displayed using, e.g., gen_cross_contour_xld.

In the following we show how to overlay the XLD contour or the ROI on the search image. The HDevelop
program solution_guide\matching\first_example_shape_matching.hdev exemplarily shows
the steps needed to visualize the results of a shape-based matching.

Step 1: Access the XLD contour containing the model

First, the model is created using create_shape_model. Then, the XLD version of the model is accessed
with get_shape_model_contours.

create_shape_model (ImageROI, NumLevels, 0, rad(360), 'auto', 'none', \

'use_polarity', 30, 10, ModelID)

get_shape_model_contours (ShapeModel, ModelID, 1)

Step 2: Determine the affine transformation

The matching is applied using the operator find_shape_model. A visualization is only reasonable if
the matching was successful. Thus, the results of the matching are checked. If the matching failed,
the operator returns empty tuples in parameters like Score. If the matching was successful, the corre-
sponding affine transformation can be constructed with the operator vector_angle_to_rigid from the
initial position and orientation of the XLD contour and the position and orientation of the match. Note

2.4 Use the Results of Matching B-41

that the initial XLD contour of the model is located at the origin of the image and not at the position of
the model in the reference image. Thus, the first two parameters are set to the value 0.

find_shape_model (SearchImage, ModelID, 0, rad(360), 0.7, 1, 0.5, \

'least_squares', 0, 0.7, RowCheck, ColumnCheck, \

AngleCheck, Score)

if (|Score| == 1)

vector_angle_to_rigid (0, 0, 0, RowCheck, ColumnCheck, AngleCheck, \

MovementOfObject)

Step 3: Transform the XLD

Now, the transformation is applied to the XLD contour of the model using the operator
affine_trans_contour_xld and the transformed contour is displayed. Figure 3.3 on page 67 in
section 3.3 shows the search image and the overlaid XLD contour.

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition, \

MovementOfObject)

dev_display (ModelAtNewPosition)

The general procedure for the projection of a contour or a region is the same. That is, in both cases the
operator vector_angle_to_rigid is used to get the homogeneous transformation matrix (2D homog-
raphy) that describes the relation between the model and the found model instance. As input it needs
the initial position of the contour or the region that has to be transformed, the initial angle of the model
(which is by default 0), the position of the found model instance, and the angle of the found model
instance. The returned 2D homography is then used by the operator affine_trans_contour_xld or
affine_trans_region, respectively, to transform the contour or region so that the position and ori-
entation of it corresponds to the position and orientation of the found model instance. The transformed
region or contour can then be displayed with dev_display.

The main difference between the projection of a contour and the projection of a region regards the
initial position of the contour or region. The initial position of the contour or region always describes the
“relative” position of the point of reference, i.e., its distance to the default point of reference. The default
position of the point of reference is (0,0), i.e., it is the origin of the image and not the position of the
model in the reference image. But depending on the structure that has to be transformed, the “relative”
position can change. Whereas the XLD contour of a shape model is derived from the model and thus its
point of reference is also the point of reference of the model, a region naturally was defined before the
model was created. Thus, its point of reference describes the position of the model in the reference image
instead of the point of reference of the later created model. That is, instead of (0,0), the values obtained
by the operator area_center for the respective region have to be passed as the first two parameters to
vector_angle_to_rigid.

Furthermore, if you have changed the reference point of a model (see, e.g., section 2.1.2 on page 21),
the values to insert as initial position change in the following way: If you query an XLD contour from
a model after changing the point of reference, nothing changes. The initial position still is (0,0), only
another part of the model serves as point of reference. If you change the point of reference after querying
the XLD contour or if you want to transform a region, which is naturally also accessed before changing
the point of reference, you have to add the values of the initial point of reference to the values of the new
point of reference.

U
se

R
es

ul
ts

B-42 General Topics

d)

c)a) b)

Figure 2.19: Aligning ROIs for inspecting parts of a razor: a) ROIs for the model; b) the model; c) mea-
suring ROIs; d) inspection results with zoomed faults.

2.4.3.2 Align ROIs for other Inspection Tasks

The results of matching can be used to align ROIs for other image processing steps. i.e., to position them
relative to the image part acting as the model. This method is suitable, e.g., if the object to be inspected
is allowed to move or if multiple instances of the object are to be inspected at once.

The HDevelop example program solution_guide\matching\align_measurements.hdev, e.g.,
uses shape-based matching to inspect multiple razor blades by measuring the width and the distance
of their “teeth”.

First, a shape model is created that will be used later to align the measurement ROIs. Figure 2.19a shows
the model ROI for the shape model, which consists of two united regions, and figure 2.19b shows the
corresponding shape model.

Then, the inspection task is realized with the following steps:

2.4 Use the Results of Matching B-43

Step 1: Position the measurement ROIs for the model blade

Two rectangular measurement ROIs are generated with gen_rectangle2 so that they are placed over
the teeth of the razor blade that acts as the model (see figure 2.19c).

Rect1Row := 244

Rect1Col := 73

DistColRect1Rect2 := 17

Rect2Row := Rect1Row

Rect2Col := Rect1Col + DistColRect1Rect2

RectPhi := rad(90)

RectLength1 := 122

RectLength2 := 2

gen_rectangle2 (MeasureROI1, Rect1Row, Rect1Col, RectPhi, RectLength1, \

RectLength2)

gen_rectangle2 (MeasureROI2, Rect2Row, Rect2Col, RectPhi, RectLength1, \

RectLength2)

To be able to transform them later along with the XLD contour of the model, they are moved with
move_region to lie on the XLD model, whose point of reference is the origin of the image (see fig-
ure 2.20a), which is queried with area_center. Note that before moving the regions the clipping must
be switched off, otherwise the region parts that are moved “outside” the image are clipped. The dis-
tances between the center of the model ROI and the centers of the rectangular measure ROIs define the
new reference positions for the measure ROIs (see figure 2.20b).

area_center (ModelROI, Area, CenterROIRow, CenterROIColumn)

get_system ('clip_region', OriginalClipRegion)

set_system ('clip_region', 'false')
move_region (MeasureROI1, MeasureROI1Ref, -CenterROIRow, -CenterROIColumn)

move_region (MeasureROI2, MeasureROI2Ref, -CenterROIRow, -CenterROIColumn)

set_system ('clip_region', OriginalClipRegion)

DistRect1CenterRow := Rect1Row - CenterROIRow

DistRect1CenterCol := Rect1Col - CenterROIColumn

DistRect2CenterRow := Rect2Row - CenterROIRow

DistRect2CenterCol := Rect2Col - CenterROIColumn

Step 2: Find all razor blades

Now, all instances of the shape model are searched for in the search image using find_shape_model.

find_shape_model (SearchImage, ModelID, 0, 0, 0.8, 0, 0.5, 'least_squares', \

0, 0.7, RowCheck, ColumnCheck, AngleCheck, Score)

Step 3: Determine the affine transformation

For each instance, i.e., for each found razor blade, the transformation between the model and the
found model instance is calculated with vector_angle_to_rigid and applied to the XLD model with
affine_trans_contour_xld so that it lies over the found model instance in the search image.

U
se

R
es

ul
ts

B-44 General Topics

Model OriginModel Origin

a) b)

Center of
Model ROI

Center of
Rectangle 1

Center of
Rectangle 2

Center of
Model ROI

Distance 1 Distance 2

Distance 1 Distance 2

Figure 2.20: Align the measure ROIs relative to the shape model: a) first, move the measure ROIs to lie
on the XLD model; b) then, determine the new reference positions for the measure ROIs by
their distance to the model.

for i := 0 to |Score| - 1 by 1

vector_angle_to_rigid (0, 0, 0, RowCheck[i], ColumnCheck[i], \

AngleCheck[i], MovementOfObject)

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition, \

MovementOfObject)

Step 4: Create measurement objects at the corresponding positions

Then, affine_trans_pixel is applied to calculate the corresponding positions of the measure ROIs,
at which the measure objects are created.

affine_trans_pixel (MovementOfObject, DistRect1CenterRow, \

DistRect1CenterCol, Rect1RowCheck, Rect1ColCheck)

affine_trans_pixel (MovementOfObject, DistRect2CenterRow, \

DistRect2CenterCol, Rect2RowCheck, Rect2ColCheck)

RectPhiCheck := RectPhi + AngleCheck[i]

gen_measure_rectangle2 (Rect1RowCheck, Rect1ColCheck, RectPhiCheck, \

RectLength1, RectLength2, Width, Height, \

'bilinear', MeasureHandle1)

gen_measure_rectangle2 (Rect2RowCheck, Rect2ColCheck, RectPhiCheck, \

RectLength1, RectLength2, Width, Height, \

'bilinear', MeasureHandle2)

Note that you must use the operator affine_trans_pixel and not affine_trans_point_2d, be-!

2.4 Use the Results of Matching B-45

cause the latter uses a different coordinate system. In particular, it uses the standard image coordi-
nate system for which a position corresponds to the center of a pixel (see figure 2.21, right). In con-
trast, the operators affine_trans_pixel, affine_trans_contour_xld, affine_trans_region,
and affine_trans_image use the coordinate system depicted in figure 2.21 (left).

Row

Column

Row

Column

0.5

−0.5 0.5

−0.50.0

0.0

Figure 2.21: (left) image coordinate system used for the matching methods and operators like
affine_trans_pixel; (right) standard image coordinate system.

In the example application, the individual razor blades are only translated but not rotated relative to the
model position. Thus, instead of applying the full affine transformation to the measure ROIs and then
creating new measure objects, you can use the operator translate_measure to translate the measure
objects themselves. The example program contains the corresponding code. You can switch between the
two methods by modifying a variable at the top of the program.

Step 5: Measure the width and the distance of the “teeth”

Now, the actual measurements are performed using the operator measure_pairs.

measure_pairs (SearchImage, MeasureHandle1, 2, 25, 'negative', 'all', \

RowEdge11, ColEdge11, Amp11, RowEdge21, ColEdge21, \

Amp21, Width1, Distance1)

measure_pairs (SearchImage, MeasureHandle2, 2, 25, 'negative', 'all', \

RowEdge12, ColEdge12, Amp12, RowEdge22, ColEdge22, \

Amp22, Width2, Distance2)

Step 6: Inspect the measurements

Finally, the measurements are inspected. If a tooth is too short or missing completely, no edges are
extracted at this point resulting in an incorrect number of extracted edge pairs. In this case, the faulty
position can be determined by checking the distance of the teeth. Figure 2.19d shows the inspection
results for the example.

U
se

R
es

ul
ts

B-46 General Topics

NumberTeeth1 := |Width1|

if (NumberTeeth1 < 37)

for j := 0 to NumberTeeth1 - 2 by 1

if (Distance1[j] > 4.0)

RowFault := round(0.5 * (RowEdge11[j + 1] + RowEdge21[j]))

ColFault := round(0.5 * (ColEdge11[j + 1] + ColEdge21[j]))

disp_rectangle2 (WindowHandle, RowFault, ColFault, 0, 4, 4)

Please note that the example program is not able to display the fault if it occurs at the first or the last
tooth.

2.4.3.3 Align the Search Results

The previous sections showed how to use the matching results to determine the so-called forward trans-
formation. This was used to transform objects from the model into the search image or, respectively, to
transform ROIs that were specified in the reference image into the search image.

You can also determine the inverse transformation which transforms objects from the search image back
into the reference image. With this transformation, you can align the search image (or parts of it), i.e.,
transform it such that the matched object is positioned as it was in the reference image. This method is
useful if the following image processing step is not invariant against rotation, e.g., OCR or the variation
model.

Note that by alignment the image is only rotated and translated. To remove perspective or lens distortions,
e.g., if the camera observes the scene under an oblique angle, you must rectify the image first (see
section 3.3.6 on page 91 for more information).

Inverse Transformation

The inverse transformation can be determined and applied in a few steps. The task of the HDevelop
program solution_guide\matching\rectify_results.hdev, e.g., is to extract the serial number
on CD covers (see figure 2.22). The matching is realized using a shape-based matching.

Step 1: Calculate the inverse transformation

You can invert a transformation easily using the operator hom_mat2d_invert.

vector_angle_to_rigid (CenterModelROIRow, CenterModelROIColumn, 0, \

RowMatch, ColumnMatch, AngleMatch, \

MovementOfObject)

hom_mat2d_invert (MovementOfObject, InverseMovementOfObject)

Note that in contrast to the previous sections, the transformation is calculated based on the absolute
coordinates of the point of reference, because the results have to be transformed such that they appear as
in the reference image.

Step 2: Rectify the search image

The inverse transformation is applied to the search image using the operator affine_trans_image.
Figure 2.22d shows the resulting rectified image of a different CD. Undefined pixels are marked in gray.

2.4 Use the Results of Matching B-47

affine_trans_image (SearchImage, RectifiedSearchImage, \

InverseMovementOfObject, 'constant', 'false')

Step 3: Extract the numbers

The serial number is positioned correctly within the original ROI and can be extracted by blob analysis
without problems. Figure 2.22e shows the result, which could then, e.g., be used as the input for OCR.

reduce_domain (RectifiedSearchImage, NumberROI, RectifiedNumberROIImage)

threshold (RectifiedNumberROIImage, Numbers, 0, 128)

connection (Numbers, IndividualNumbers)

e)

d)

b)a)

c)

Figure 2.22: Rectify the search results: a) ROIs for the model and for the number extraction; b) the model;
c) found model and number ROI at matched position; d) rectified search image (only relevant
part shown); e) extracted numbers.

U
se

R
es

ul
ts

B-48 General Topics

Unfortunately, the operator affine_trans_image transforms the full image even if its domain was
restricted with the operator reduce_domain. In a time-critical application it may therefore be necessary
to crop the search image before transforming it.

Image Cropping

In the following, the steps needed for the image cropping are described. Additionally, they are visualized
in figure 2.23.

translate(−Row1,−Column1)

ColumnRect1

RowRect1

c) d)b)

a)

Figure 2.23: Rectifying only a part of the search image: a) smallest image part containing the ROI;
b) cropped search image; c) result of the rectification; d) rectified image reduced to the
original number ROI.

Step 1: Crop the search image

First, the smallest axis-parallel rectangle surrounding the transformed number ROI is computed us-
ing the operator smallest_rectangle1. Then, the search image is cropped to this part with
crop_rectangle1. Figure 2.23b shows the resulting image overlaid on a gray rectangle to facilitate
the comparison with the subsequent images.

2.4 Use the Results of Matching B-49

affine_trans_region (NumberROI, NumberROIAtNewPosition, \

MovementOfObject, 'nearest_neighbor')
smallest_rectangle1 (NumberROIAtNewPosition, RowRect1, ColumnRect1, \

RowRect2, ColumnRect2)

crop_rectangle1 (SearchImage, CroppedSearchImage, RowRect1, ColumnRect1, \

RowRect2, ColumnRect2)

Step 2: Create an extended affine transformation

In fact, the cropping can be interpreted as an additional affine transformation, in particular, as a transla-
tion by the negated coordinates of the upper left corner of the cropping rectangle (see figure 2.23a). We
therefore add this transformation to the transformation that describes the movement of the object using
the operator hom_mat2d_translate. Then, we invert this extended transformation with the operator
hom_mat2d_invert.

hom_mat2d_translate (MovementOfObject, -RowRect1, -ColumnRect1, \

MoveAndCrop)

hom_mat2d_invert (MoveAndCrop, InverseMoveAndCrop)

Step 3: Transform the cropped image

Using the inverted extended transformation, the cropped image can easily be rectified with the operator
affine_trans_image (figure 2.23c) and then be reduced to the original number ROI (figure 2.23d) in
order to extract the numbers.

affine_trans_image (CroppedSearchImage, RectifiedROIImage, \

InverseMoveAndCrop, 'constant', 'true')
reduce_domain (RectifiedROIImage, NumberROI, RectifiedNumberROIImage)

2.4.4 Use the Estimated 2D Scale

The transformations described in the previous section comprised only a translation and a rotation. For
some matching approaches, the object that is searched for may be additionally scaled in the search
image. For example, the perspective, deformable matching returns a projective transformation matrix
(2D homography) or a 3D pose. That is, the scaling is returned implicitly and is already available as part
of a transformation matrix. In contrast, for the shape-based matching the scaling is returned explicitly
and is not yet part of a transformation matrix. Generally, scaling can be used similarly to the position
and orientation. However, there is no convenient operator like vector_angle_to_rigid that creates
an affine transformation including the scale. Therefore, the scaling must be added separately.

The HDevelop example program hdevelop\Matching\Shape-Based\

find_aniso_shape_model.hdev shows how to add a scaling to a transformation matrix. The
task is to find SMD capacitors that exhibit independent size changes in the row and column direction.
That is, an anisotropic scaling is needed.

Step 1: Create the model and access the model contours

First, to obtain a model, a synthetic template image containing a rectangle with rounded corners is
created as described in section 2.1.3 on page 23 (see figure 2.24, left). From this image an anisotropic

U
se

R
es

ul
ts

B-50 General Topics

Figure 2.24: (left) synthetic template image; (right) result of anisotropic shape-based matching including
the scaling factors in row and column direction.

shape model is derived with create_aniso_shape_model. The model contours that will be projected
into the search image after the actual matching are queried with get_shape_model_contours.

gen_contour_polygon_rounded_xld (Contour, [50,100,100,50,50], [50,50,150, \

150,50], [6,6,6,6,6], 1)

gen_image_const (Image, 'byte', 200, 150)

paint_xld (Contour, Image, ImageModel, 128)

create_aniso_shape_model (ImageModel, 'auto', -rad(10), rad(20), 'auto', \

0.9, 1.7, 'auto', 0.9, 1.1, 'auto', 'none', \

'use_polarity', 'auto', 20, ModelID)

get_shape_model_contours (ModelContours, ModelID, 1)

Step 2: Find the model

Then, applying the actual matching with find_aniso_shape_model, several instances of the model are
found in the search images.

read_image (Image, 'smd/smd_capacitors_' + J$'02d')
find_aniso_shape_model (Image, ModelID, -rad(10), rad(20), 0.9, 1.7, \

0.9, 1.1, 0.7, 0, 0.5, 'least_squares', 0, 0.8, \

Row, Column, Angle, ScaleR, ScaleC, Score)

Step 3: Transform the model contours

For each found model instance, a transformation matrix is created with hom_mat2d_identity. Then,
the scaling is added with hom_mat2d_scale. There, the previously created transformation matrix, the
scaling factors that were returned by the matching, and the point of reference for the scaling are inserted.
In this case, the scaling factors are different for row and column direction. In case of a uniform scaling,
both values would be the same. Generally, similarly to the rotation (compare section 2.4.3 on page 39),
the scaling is performed around the center of the ROI – if you did not change the point of reference.
This is depicted in figure 2.25 at the example of an ROI whose center does not coincide with the center
of the IC. Within the HDevelop program, the scaling is performed “before” the translation and rotation.

2.4 Use the Results of Matching B-51

Column

Row

reference image search image

Column

Row

Scale = 0.5Scale = 1

Figure 2.25: The center of the ROI acts as the point of reference for the scaling.

Thus, the point of reference for the scaling corresponds to the point of reference of the model contour,
which is by default (0,0). If you perform the scaling “after” the translation and rotation, e.g., if you
used vector_angle_to_rigid to create an affine transformation that includes the translation and ro-
tation in one step, you have to use the position of the match as the point of reference. An example is
solution_guide\matching\multiple_scales.hdev.

After adding the rotation and translation to the transformation matrix, the model contour is
transformed and projected to the corresponding SMD capacitor in the search image using
affine_trans_contour_xld (see figure 2.24 on page 50, right).

for I := 0 to Num - 1 by 1

hom_mat2d_identity (HomMat2D)

hom_mat2d_scale (HomMat2D, ScaleR[I], ScaleC[I], 0, 0, HomMat2D)

hom_mat2d_rotate (HomMat2D, Angle[I], 0, 0, HomMat2D)

hom_mat2d_translate (HomMat2D, Row[I], Column[I], HomMat2D)

affine_trans_contour_xld (ModelContours, ContoursTrans, HomMat2D)

endfor

2.4.5 Use the Estimated 2D Homography

When applying one of the uncalibrated perspective matching approaches, in contrast to the pure 2D
matching approaches no positions, orientations, and scales but projective transformation matrices are
returned. These can be used to apply a projective transformation, e.g., to visualize the matching result
by overlaying a structure of the reference image on the match in the search image. Note that different
HALCON structures like pixels, regions, images, or XLD contours can be transformed that way (see also
section 2.4.2.2 on page 37).

Depending on the selected matching approach, typically different structures are transformed. For the
uncalibrated perspective deformable matching, e.g., the model contour is transformed to visualize the
match, whereas for the uncalibrated descriptor-based matching the region that was used to create the
model may be transformed and visualized.

An example for a projective transformation in the context of an uncalibrated perspective de-
formable matching is given in the HDevelop example program hdevelop\Applications\Traffic-

Monitoring\detect_road_signs.hdev (see figure 2.26).

U
se

R
es

ul
ts

B-52 General Topics

Figure 2.26: The contours of the model are projected into the search image.

Step 1: Find the perspective deformable model

There, the model of a road sign is searched in an image using
find_planar_uncalib_deformable_model, which returns the projective transformation matrix
HomMat2D.

find_planar_uncalib_deformable_model (ImageChannel, Models[Index2], 0, \

0, ScaleRMin[Index2], \

ScaleRMax[Index2], \

ScaleCMin[Index2], \

ScaleCMax[Index2], 0.85, 1, 0, 2, \

0.4, [], [], HomMat2D, Score)

Step 2: Transform the model contours

After the matching, the model contours are queried from the model with
get_deformable_model_contours. The returned contours are by default positioned at the ori-
gin of the reference image. Thus, to visualize them at the position of the match, the contour must be
transformed using the returned projective transformation matrix. This transformation is applied with
projective_trans_contour_xld.

get_deformable_model_contours (ModelContours, Models[Index2], 1)

projective_trans_contour_xld (ModelContours, ContoursProjTrans, \

HomMat2D)

dev_display (ContoursProjTrans)

An example for a projective transformation in the context of an uncalibrated descriptor-based
matching is the HDevelop example program hdevelop\Applications\Object-Recognition-2D\

detect_brochure_pages.hdev (see figure 2.27).

2.4 Use the Results of Matching B-53

Figure 2.27: (left) Model brochure page with ROI and interest points; (right) search image with projected
interest points and ROI.

Step 1: Find the descriptor model

There, the projective transformation matrix HomMat2D is returned by
find_uncalib_descriptor_model.

find_uncalib_descriptor_model (ImageGray, ModelIDs[Index2], \

'threshold', 800, \

['min_score_descr', \

'guided_matching'], [0.003,'on'], \

0.25, 1, 'num_points', HomMat2D, \

Score)

Step 2: Access and visualize the interest points

The interest points are queried with get_descriptor_model_points. In contrast to the contours of
a perspective deformable model, which can only be queried for the model, the points of the descriptor
model can also be queried for the specific match (Set set to ’search’). Thus, they do not have to be
transformed anymore.

get_descriptor_model_points (ModelIDs[Index2], 'search', 0, Row, \

Col)

gen_cross_contour_xld (Cross, Row, Col, 6, 0.785398)

Step 3: Transform the model region and its corner points

Projective transformations can be used if, e.g., the transformed region that was used for the creation of
the model should be visualized for the match as well or if the transformed corner points of the region are

U
se

R
es

ul
ts

B-54 General Topics

needed to check the angle between edges of the region.

projective_trans_region (Rectangle, TransRegion, HomMat2D, \

'bilinear')
projective_trans_pixel (HomMat2D, RowRoi, ColRoi, RowTrans, \

ColTrans)

angle_ll (RowTrans[2], ColTrans[2], RowTrans[1], ColTrans[1], \

RowTrans[1], ColTrans[1], RowTrans[0], ColTrans[0], \

Angle)

Angle := deg(Angle)

if (Angle > 70 and Angle < 110)

dev_display (TransRegion)

dev_display (Cross)

endif

2.4.6 Use the Estimated 3D Pose

When applying one of the calibrated perspective matching approaches, 3D poses are returned that de-
scribe the relation between the model and the found model instance in world coordinates. To use such a
pose, e.g., to visualize the matching result by overlaying a structure of the reference image on the match
in the search image, a 3D affine transformation is needed (see also section 2.4.2.3 on page 38).

Depending on the selected matching approach, different structures from the reference image may be
needed in the search image. For the calibrated perspective, deformable matching typically the contour
of the model is used to visualize the match. That is, the contour must be transformed from the reference
image to the search image. For the calibrated descriptor-based matching, the interest points of the model
can be queried directly for the search result, i.e., there is no need for a transformation of the model
representation. However, a transformation may be needed if the region that was used to create the model
should be transformed as well.

An example for a 3D affine transformation in the context of a calibrated perspective deformable match-
ing is given in the HDevelop example program hdevelop\Applications\Position-Recognition-

3D\locate_car_door.hdev (see figure 2.28). There, a part of a car door is searched in an image using
find_planar_calib_deformable_model, which returns the 3D pose Pose.

find_planar_calib_deformable_model (ImageReducedSearch, ModelID, -0.2, \

0.5, 1, 1, 0.8, 1, 0.6, 1, 1, 3, \

0.6, [], [], Pose, CovPose, Score)

For the visualization of the match, the model contour should be overlaid on the match in the search
image. This transformation is realized in three steps.

Step 1: Preprocessing for visualization purposes

First, the operator set_deformable_model_param is used to set the coordinate system in which the
contours are returned to ’world’. When calling the operator get_deformable_model_contours the
contours are returned in the world coordinate system (WCS). In this example, this step was realized
before the actual matching.

2.4 Use the Results of Matching B-55

Figure 2.28: The contours of the model are projected into the search image.

set_deformable_model_param (ModelID, \

'get_deformable_model_contours_coord_system', \

'world')
get_deformable_model_contours (ModelContours, ModelID, 1)

Step 2: Apply a 3D affine transformation to the points of the contour

Within the WCS, a 3D affine transformation transforms the individual points of the contour according to
the 3D pose that is returned by the matching. Before applying this transformation, the 3D pose must be
converted with pose_to_hom_mat3d into a 3D homogeneous transformation matrix HomMat3D.

for Index1 := 0 to |Score| - 1 by 1

tuple_select_range (Pose, Index1 * 7, ((Index1 + 1) * 7) - 1, \

PoseSelected)

pose_to_hom_mat3d (PoseSelected, HomMat3D)

Additionally, as 3D affine transformations cannot be applied to 2D contours, the contour, which is
now available in the x-y-plane of the WCS, must be split into points. This is realized by the opera-
tor get_contour_xld, which returns a tuple for the x coordinates and a tuple for the y coordinates. To
obtain 3D coordinates, a tuple for the z coordinates with the same number of elements is created, for
which all values are 0.

gen_empty_obj (FoundContour)

for Index2 := 1 to NumberContour by 1

select_obj (ModelContours, ObjectSelected, Index2)

get_contour_xld (ObjectSelected, Y, X)

Z := gen_tuple_const(|X|,0.0)

The 3D points are now transformed by the 3D affine transformation using affine_trans_point_3d.

U
se

R
es

ul
ts

B-56 General Topics

affine_trans_point_3d (HomMat3D, X, Y, Z, Xc, Yc, Zc)

Step 3: Project the points into the search image and reconstruct the contour

Then, the transformed 3D points are projected into the search image using project_3d_point and the
contour is reconstructed with gen_contour_polygon_xld.

project_3d_point (Xc, Yc, Zc, CamParam, R, C)

gen_contour_polygon_xld (ModelWorld, R, C)

concat_obj (FoundContour, ModelWorld, FoundContour)

endfor

dev_display (FoundContour)

endfor

An example for a 3D affine transformation in the context of a calibrated descriptor-based matching
is given in the HDevelop example program hdevelop\Applications\Object-Recognition-2D\

locate_cookie_box.hdev that is described in more detail in section 3.7.1 on page 137. There, se-
lected image points, in particular the corner points of the rectangular ROI, which was used to build the
descriptor model, are transformed into the WCS using image_points_to_world_plane.

2.4.7 About the Score

The scores returned by the different matching approaches have different meanings. For the gray-value
based matching, no score but the average deviation of the gray values from the best match is returned (at
least for the operators best_match_*). For the correlation-based matching, the score is determined by
a normalized cross correlation between a pattern and the image.

For the approaches that use contours, in particular for the shape-based matching and the local or perspec-
tive deformable matching the score is a number between 0 and 1 that approximately shows how much
of the model is visible in the search image. That is, if half of a model is occluded, the score can not be
larger than 0.5. Note that besides the pure number of corresponding contour points further influences
on the score exist, which comprise, e.g., the orientation of the contour (see also section 2.1.2.2 on page
22 and section 3.3.4.3 on page 80).

For the component-based matching, the score has a similar meaning, but here, two types of scores have
to be distinguished. On one hand, the score for the individual components is returned. Here, again the
score shows primarily how much of the component is visible in the image. On the other hand, a score for
the whole component model is returned. This is determined via the weighted mean of the score values
for the individual components. The weighting is performed according to the number of model points
within the respective component.

For the descriptor-based matching different meanings for the score value(s) are available, depending on
the selected score type (see section 3.7.3.2 on page 140).

The Individual Approaches B-57

Chapter 3

The Individual Approaches

Now, we go deeper into the individual matching approaches, in particular, for

• the gray-value-based matching (section 3.1),

• the correlation-based matching (section 3.2),

• the shape-based matching (section 3.3 on page 64),

• the component-based matching (section 3.4 on page 92),

• the local deformable matching (section 3.5 on page 111),

• the perspective deformable matching (section 3.6 on page 124), and

• the descriptor-based matching (section 3.7 on page 136).

3.1 Gray-Value-Based Matching

The gray-value-based matching is the classical method, which can only be used if the gray values inside
the object do not vary and if there are no missing parts and no clutter. The method can handle single
instances of objects, which can appear rotated in the search image. Note that for almost all applications,

!the other approaches, e.g., the correlation-based matching or one of the shape-based matching
approaches, are to be preferred. The rare cases in which the very slow classical gray-value-based
matching is to be preferred comprise the case that the matching must be illumination-variant. If, e.g. a
colored pattern has to be found and the hue value of the object in the search image must not deviate from
the hue value of the object in the template image, the illumination-invariant approaches might be less
suitable, as they use normalized gray values, i.e., they evaluate the relative differences between the gray
values instead of the absolute values.

If your application is one of the rare cases in which a gray-value-based matching has to be applied, the
matching consists of the following steps:

G
ra

y-
Va

lu
e-

B
as

ed

B-58 The Individual Approaches

• Create a model with create_template if the object is expected to be only translated but not
rotated or create_template_rot if the object has to be found also in a rotated position in the
search image.

• Search the model in images with best_match, best_match_mg, best_match_pre_mg,
best_match_rot, best_match_rot_mg, fast_match, or fast_match_mg (see below for the
differences between the operators).

• Clear the model from memory with clear_template.

Note that gray-value-based matching can be applied in different modes. Actually, when creating the
model, you can set the parameter GrayValues to ’original’, ’normalized’, ’gradient’, or ’so-
bel’. For the illumination-variant matching the parameter must be set to ’original’.!
The main difference between the basic operators for the search (best_match and fast_match) is the
type of output. best_match returns the coordinates of the best match, i.e., a single position (row,
column) for the object in each image, and fast_match returns a region consisting of all points that
match within a tolerance specified by the parameter MaxError.

For both basic operators specific variants are available. best_match_mg and fast_match_mg, e.g.,
work like best_match or fast_match, respectively, but additionally, the search is applied within a pyra-
mid. With best_match_pre_mg additionally a pregenerated pyramid is used. With best_match_rot

and best_match_rot_mg the object may be rotated in the search image (for the latter again a pyramid
is used).

Between the creation of the model and the search of the model in images, additionally,

• the model can be reused by storing it to file with write_template and reading it from file with
read_template,

• the model can be adapted to the specific size of an image with adapt_template,

• an offset can be added to the gray values of the model to eliminate gray value changes in the image
with set_offset_template, and

• the point of reference of the model can be changed with set_reference_template.

3.2 Correlation-Based Matching

Another approach that is based on gray values is the correlation-based matching. This approach uses
a normalized cross correlation to evaluate the correspondence between a model and a search image. It
is significantly faster than the classical gray-value-based matching and can compensate both additive as
well as multiplicative variations in illumination. In contrast to the shape-based matching, also objects
with slightly changing shapes, lots of texture, or objects in blurred images (contours vanish in blurred
images, e.g., because of defocus) can be found.

The following sections show

• a first example for a correlation-based matching (section 3.2.1),

3.2 Correlation-Based Matching B-59

• how to select an appropriate ROI to derive the template image from the reference image (sec-
tion 3.2.2 on page 60),

• how to create a suitable model (section 3.2.3 on page 61), and

• how to optimize the search (section 3.2.4 on page 62).

3.2.1 A First Example

In this section we give a quick overview of the matching process with correlation-based matching. To
follow the example actively, start the HDevelop program hdevelop\Matching\Correlation-Based\

find_ncc_model_defocused.hdev, which demonstrates the robustness of correlation-based matching
against texture and defocus.

Step 1: Select the object in the reference image

First, inside the training image a region containing the object is created using gen_rectangle1. The
center of this region is queried using area_center. It will be needed in a later step to overlay the results
of the matching with the original region. Then, the image is reduced to the region of interest.

read_image (Image, 'smd/smd_on_chip_05')
gen_rectangle1 (Rectangle, 175, 156, 440, 460)

area_center (Rectangle, Area, RowRef, ColumnRef)

reduce_domain (Image, Rectangle, ImageReduced)

Step 2: Create the model

The reduced image is used to create the NCC model with create_ncc_model. As a result, the operator
returns a handle for the newly created model (ModelID), which can then be used to specify the model,
e.g., in calls to the operator find_ncc_model.

create_ncc_model (ImageReduced, 'auto', 0, 0, 'auto', 'use_polarity', \

ModelID)

Step 3: Find the object again

Now, the search images are read in a loop and for each search image the NCC model is searched and
overlaid by the region of the model using an affine transformation as described in section 2.4.2.1 on
page 35. Note that the training was applied in a focused image and the search is applied in images with
varying defocus. Nevertheless, the object instances are all found. Figure 3.1 shows the reference image
and one of the defocused but found model instances.

C
or

re
la

tio
n-

B
as

ed

B-60 The Individual Approaches

Figure 3.1: (left) reference image with the ROI that is used to create the model; (right) match of a defo-
cused instance of the model.

for J := 1 to 11 by 1

read_image (Image, 'smd/smd_on_chip_' + J$'02')
find_ncc_model (Image, ModelID, 0, 0, 0.5, 1, 0.5, 'true', 0, Row, \

Column, Angle, Score)

vector_angle_to_rigid (RowRef, ColumnRef, 0, Row, Column, 0, HomMat2D)

affine_trans_region (Rectangle, RegionAffineTrans, HomMat2D, \

'nearest_neighbor')
dev_display (Image)

dev_display (RegionAffineTrans)

endfor

Step 4: Destroy the model

When the NCC model is not needed anymore, it is destroyed using clear_ncc_model.

clear_ncc_model (ModelID)

3.2.2 Select the Model ROI

As a first step of the correlation-based matching, the region of interest that specifies the template image
must be selected as described, e.g., in section 2.1.1 on page 20. This region can have an arbitrary shape,
i.e., it can also contain holes or consist of several parts that are not connected. Thus, it is possible to
create an ROI that contains only “robust” parts of the object. In most cases, the ROI must be selected
so that it contains also some pixels outside of the object of interest, as the immediate surroundings
(neighborhood) of the object are needed to obtain the model. But if the object itself contains enough
structure to be recognized independently from its outline, it can also be selected smaller than the object.
Then, the object can be found also in front of different backgrounds. Note that you can speed up the later
search using a subsampling (see section 3.2.3.1). For that, the ROI should not be too “thin”, because
otherwise it vanishes at higher pyramid levels! As a rule of thumb, you are on the safe side if an ROI

3.2 Correlation-Based Matching B-61

is 2NumLevels−1 pixels wide. That is, a width of 8 pixels allows to use 4 pyramid levels. After having
selected a suitable ROI, the reduced image is used as template image for the creation of the model.

3.2.3 Create a Suitable NCC Model

Having derived the template image from the reference image, the NCC model can be created with the
operator create_ncc_model. Here, we will take a closer look at how to adjust the corresponding
parameters. In particular, you can

• use a subsampling to speed up the search by adjusting the parameter NumLevels (section 3.2.3.1),

• allow a specific range of orientation by adjusting the parameters AngleExtent, AngleStart, and
AngleStep (section 3.2.3.2), and

• specify which pixels are compared with the model in the later search, i.e., specify the polarity of
the object by adjusting the parameter Metric (section 3.2.3.3).

For the parameters NumLevels and AngleStep, you can let HALCON suggest values automatically.
This can be done either by setting the parameters within create_ncc_model to the value ’auto’;
then, if you need to know the values, you can query them using get_ncc_model_params. Or you
apply determine_ncc_model_params before you create the model. Then, you get an estimation of the
automatically determined values as suggestion so that you can still modify them for the actual creation of
the model. Note that both approaches return only approximately the same values and the values returned
by create_ncc_model are more precise.

Note that after the creation of the model, the model can still be modified. In section 3.2.3.4 the possibil-
ities for the inspection and modification of an already created model are shown.

3.2.3.1 Use Subsampling to Speed Up the Search (NumLevels)

To speed up the matching process, subsampling can be used (see also section 2.3.2 on page 30). There,
an image pyramid is created, consisting of the original, full-sized image and a set of downsampled
images. The model is then created and searched on the different pyramid levels. You can specify how
many pyramid levels are used via the parameter NumLevels. We recommend to let HALCON select a
suitable value itself by specifying the value ’auto’. You can then query the used value via the operator
get_ncc_model_params.

3.2.3.2 Allow a Range of Orientation (AngleExtent, AngleStart, AngleStep)

If the object’s rotation may vary in the search images you can specify the allowed range in the parameter
AngleExtent and the starting angle of this range in the parameter AngleStart (unit: radians). We
recommend to limit the allowed range of rotation as much as possible in order to speed up the search
process. During the matching process, the model is searched for in different angles within the allowed
range, at steps specified with the parameter AngleStep. If you select the value ’auto’, HALCON
automatically chooses an optimal step size to obtain the highest possible accuracy by determining the
smallest rotation that is still discernible in the image. In section 3.3.3.3 on page 73 tips for the selection
of values for all three parameters are given for shape-based matching. These tips are also valid for
correlation-based matching.

C
or

re
la

tio
n-

B
as

ed

B-62 The Individual Approaches

3.2.3.3 Specify how Gray Values are Compared with the Model (Metric)

The parameter Metric lets you specify whether the polarity, i.e., the “direction” of the contrast must be
observed. If you select the value ’use_polarity’ the polarity is observed, i.e., the points in the search
image must show the same direction of the contrast as the corresponding points in the model. If, e.g.,
the model is a bright object on a dark background, the object is found in the search images only if it is
also brighter than the background. You can choose to ignore the polarity globally by selecting the value
’ignore_global_polarity’. In this mode, an object is recognized also if the direction of its contrast
reverses, e.g., if your object can appear both as a dark shape on a light background and vice versa. This
flexibility, however, is obtained at the cost of a slightly lower recognition speed and reduced robustness.

3.2.3.4 Inspect and Modify the NCC Model

To inspect the current parameter values of the model, you query them with get_ncc_model_params.
This may be necessary if during the creation of the model an automatic parameter selection was used or
if the model was created within another program, saved to file with write_ncc_model, and read from
this file in the current program with read_ncc_model. Additionally, you can query the coordinates of
the origin of the model using get_ncc_model_origin.

After the creation of the model and before you search the object in a search image, you can further modify
the model. In particular, you can apply set_ncc_model_param to change individual parameters and
set_ncc_model_origin to change the origin of the model. The latter is not recommended because the
accuracy of the matching result may decrease, which is shown in more detail for shape-based matching
in section 3.3.4.7 on page 85.

3.2.4 Optimize the Search Process

The actual matching is performed by the operator find_ncc_model. In the following, we show how to
select suitable parameters for this operator to adapt and optimize a matching task. In particular, we show
how to

• restrict the search space to a region of interest (section 3.2.4.1),

• restrict the search space by restricting the range of orientation via the parameters AngleStart and
AngleExtent (section 3.2.4.2),

• restrict the search space to a specific amount of deviations from the model for the object, i.e.,
specify the similarity of the object via the parameter MinScore (section 3.2.4.3),

• search for multiple instances of the model by adjusting the parameters NumMatches and Max-

Overlap (section 3.2.4.4),

• specify the accuracy that is needed for the results by adjusting the parameter SubPixel (sec-
tion 3.2.4.5), and

• restrict the number of pyramid levels (NumLevels) for the search process (section 3.2.4.6 on page
64).

3.2 Correlation-Based Matching B-63

At the end of the matching, the model and further buffered data have to be cleared from memory with
clear_ncc_model. If you want to reuse a model, you have to store it into a file before clearing it from
memory. Then, you can read it from file again as described in more detail in section 2.2 on page 28.

3.2.4.1 Restrict the Search to a Region of Interest

The obvious way to restrict the search space and thus speed up the matching is to apply the operator
find_ncc_model not to the whole image but only to an ROI. The corresponding procedure is explained
in more detail for shape-based matching in section 3.3.4.1 on page 78. For correlation-based matching
you simply have to replace find_shape_model by find_ncc_model.

3.2.4.2 Restrict the Range of Orientation (AngleStart, AngleExtent)

When creating the model you already specified the allowed range of orientation (see section 3.2.3.2
on page 61). When calling the operator find_ncc_model you can further limit the range with the
parameters AngleStart and AngleExtent. This is useful if you can restrict these ranges by other
information, which can, e.g., be obtained by suitable image processing operations. Another reason for
using a larger range when creating the model may be that you want to reuse the model for other matching
tasks.

3.2.4.3 Specify the Similarity of the Object (MinScore)

The parameter MinScore specifies the minimum score a potential match must have to be returned as
match. The score is a value for the quality of a match, i.e., for the correspondence, or “similarity”,
between the model and the search image. For correlation-based matching the score is obtained using the
normalized cross correlation between the pattern and the image (for the formula, see the description of
find_ncc_model in the Reference Manual). To speed up the search, the value of MinScore should be
chosen as large as possible, but of course still as small as necessary for the success of the search.

3.2.4.4 Search for Multiple Instances of the Object (NumMatches, MaxOverlap)

To find multiple instances of a model in the search image, the maximum number of returned matches
is selected via the parameter NumMatches. Additionally, the parameter MaxOverlap specifies to which
degree the instances may overlap. In section 3.3.4.5 on page 82 the corresponding parameters for shape-
based matching are explained in more detail. There, tips for the parameter selection are given that are
valid also for correlation-based matching. Note that if multiple instances of the object are searched and
found, the parameters Row, Column, Angle, and Score contain tuples. How to access these results is
exemplarily shown for shape-based matching in section 3.3.5.1 on page 89.

3.2.4.5 Specify the Needed Accuracy (SubPixel)

The parameter SubPixel specifies if the position and orientation of a found model instance is returned
with pixel accuracy (SubPixel set to ’false’) or with subpixel accuracy (SubPixel set to ’true’).
As the subpixel accuracy is almost as fast as the pixel accuracy, we recommend to set SubPixel to
’true’.

C
or

re
la

tio
n-

B
as

ed

B-64 The Individual Approaches

3.2.4.6 Restrict the Number of Pyramid Levels (NumLevels)

The parameter NumLevels, which you already specified when creating the model, allows you to use
a different (in most cases a more restrictive) value in the search process. By using the value 0 for
NumLevels, the value specified when creating the model is used.

Optionally, NumLevels can contain a second value, so that you can specify not only the highest but also
the lowest pyramid level used for the search. If the search is finished on a pyramid level that is higher
than the first pyramid level, which corresponds to the original, full-sized image, the search becomes
faster. On the other hand, the search is then also less robust and less accurate.

3.2.4.7 Set the NCC Model Parameter ’timeout’ via set_ncc_model_param

If your application demands that the search must be carried out within a specific time, you can set the
parameter ’timeout’ with the operator set_ncc_model_param to specify the maximum period of time
after which the search is guaranteed to terminate, i.e., you can make the search interruptible. But note
that for an interrupted search no result is returned. Additionally, when setting the timeout mechanism,
the runtime of the search may be increased by up to 10%.

3.3 Shape-Based Matching

The shape-based matching does not use the gray values of pixels and their neighborhood as template but
describes the model by the shapes of contours. The following sections show

• a first example for a shape-based matching (section 3.3.1),

• how to select an appropriate ROI to derive the template image from the reference image (sec-
tion 3.3.2 on page 67),

• how to create a suitable model (section 3.3.3 on page 69),

• how to optimize the search (section 3.3.4 on page 77),

• how to deal with the results that are specific for shape-based matching (section 3.3.5 on page 89),
and

• how to adapt to a changed camera orientation (section 3.3.6 on page 91).

Note that for shape-based matching, an HDevelop Assistant is available, which helps you to configure
and test the matching process with a few mouse clicks and to optimize parameters interactively to get
the maximum matching speed and recognition rate. Additionally, it can be used to prepare the reference
image before the model ROI is selected. How to use the Matching Assistant is described in the HDevelop
User’s Guide, section 7.3 on page 269.

3.3 Shape-Based Matching B-65

3.3.1 A First Example

In this section we give a quick overview of the matching process with shape-based match-
ing. To follow the example actively, start the HDevelop program solution_guide\matching\

first_example_shape_matching.hdev, which locates the print on an IC.

Step 1: Select the object in the reference image

After grabbing the reference image the first task is to create a region containing the object. In the
example program, a rectangular region is created using the operator gen_rectangle1. Alternatively,
you can draw the region interactively using, e.g., draw_rectangle1 or use a region that results from
a previous segmentation process. Then, an image containing just the selected region, i.e., the template
image, is created using the operator reduce_domain. The result is shown in figure 3.2.

Row1 := 188

Column1 := 182

Row2 := 298

Column2 := 412

gen_rectangle1 (ROI, Row1, Column1, Row2, Column2)

reduce_domain (ModelImage, ROI, ImageROI)

Step 2: Create the model

With the operator create_shape_model, the model is created. Before this, we recommend to apply the
operator inspect_shape_model, which helps you to find suitable parameters for the model creation.

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)

create_shape_model (ImageROI, NumLevels, 0, rad(360), 'auto', 'none', \

'use_polarity', 30, 10, ModelID)

1© 2©

Figure 3.2: (left) reference image with the ROI that specifies the object; (right) the internal model (4
pyramid levels).

S
ha

pe
-B

as
ed

B-66 The Individual Approaches

inspect_shape_model shows the effect of two parameters, in particular the number of pyramid levels
on which the model is created (NumLevels) and the minimum contrast that object points must have to be
included in the model (Contrast). As a result, the operator inspect_shape_model returns the model
points on the selected pyramid levels as shown in figure 3.2. Thus, you can check whether the model
contains the relevant information to describe the object of interest.

When actually creating the model with the operator create_shape_model, you can specify additional
parameters besides NumLevels and Contrast. For example, you can restrict the range of angles the
object can assume (AngleStart and AngleExtent) and the angle steps at which the model is created
(AngleStep). With the help of the parameter Optimization you can reduce the number of model
points, which is useful in the case of very large models. The parameter Metric lets you specify whether
the polarity of the model points must be observed. Finally, you can specify the minimum contrast object
points must have in the search images to be compared with the model (MinContrast). The creation of
the model is described in detail in section 3.3.3 on page 69.

As a result, the operator create_shape_model returns a handle for the newly created model (ModelID),
which can then be used to specify the model, e.g., in calls to the operator find_shape_model. Note that
if you use HALCON’s COM, .NET, or C++ interface and call the operator via the classes HShapeModelX
or HShapeModel, no handle is returned because the instance of the class itself acts as your handle.

If not only the orientation but also the scale of the searched object is allowed to vary, you must use the
operator create_scaled_shape_model or create_aniso_shape_model to create the model. Then,
you can describe the allowed range of scale with parameters similar to those used for the range of angles.

Step 3: Find the object again

To find the object in a search image, all you need to do is call the operator find_shape_model. Fig-
ure 3.3 shows the result for one of the example images.

for i := 1 to 20 by 1

grab_image (SearchImage, FGHandle)

find_shape_model (SearchImage, ModelID, 0, rad(360), 0.7, 1, 0.5, \

'least_squares', 0, 0.7, RowCheck, ColumnCheck, \

AngleCheck, Score)

endfor

Besides the already mentioned ModelID, find_shape_model provides further parameters to optimize
the search process. The parameters AngleStart, AngleExtent, and NumLevels, which you already
specified when creating the model, allow you to use more restrictive values in the search process. By
using the value 0 for NumLevels, the value specified when creating the model is used. With the parameter
MinScore you can specify how much of the model must be visible. A value of 0.5 approximately
means that half of the contours of a model must be found. Furthermore, you can specify how many
instances of the object are expected in the image (NumMatches) and how much two instances of the
object may overlap in the image (MaxOverlap). To compute the position of the found object with
subpixel accuracy the parameter SubPixel should be set to a value different from ’none’. Finally, the
parameter Greediness describes the used search heuristics, ranging from “safe but slow” (value 0) to
“fast but unsafe” (value 1). How to optimize the search process is described in detail in section 3.3.4 on
page 77.

The operator find_shape_model returns the position and orientation of each found object instance in
the parameters Row, Column, and Angle, and their corresponding Score.

3.3 Shape-Based Matching B-67

Figure 3.3: Finding the object in other images.

If you use the operator find_scaled_shape_model or find_aniso_shape_model (after creating
the model using create_scaled_shape_model or create_aniso_shape_model, respectively), ad-
ditionally the scale of the found object is returned in Scale or ScaleR and ScaleC, respectively.

Step 4: Destroy the model

When the shape model is not needed anymore, it is destroyed using clear_shape_model.

clear_shape_model (ModelID)

The following sections go deeper into the details of the individual steps of a shape-based matching and
the parameters that have to be adjusted.

3.3.2 Select the Model ROI

As a first step of the shape-based matching, the region of interest that specifies the template image must
be selected as described, e.g., in section 2.1.1 on page 20. This region can have an arbitrary shape, i.e.,
it can also contain holes or consist of several parts that are not connected. Thus, it is possible to create
an ROI that contains only “robust” parts of the object. The ROI must be selected so that it contains all
prominent structures of the object and also some pixels outside of them, as their immediate surroundings
(neighborhood) are needed to obtain the model. Furthermore, you can speed up the later search using
a subsampling (see section 3.3.3.2 on page 72). For that, the ROI should not be too “thin”, because
otherwise it vanishes at higher pyramid levels! As a rule of thumb, you are on the safe side if an ROI
is 2NumLevels−1 pixels wide. That is, a width of 8 pixels allows to use 4 pyramid levels. After having
selected a suitable ROI, the reduced image is used as template image for the creation of the model.

When using shape-based matching in the presence of clutter in the reference image, you can also
use the operator inspect_shape_model to improve an interactively selected ROI by additional im-
age processing. This is shown in the HDevelop example program solution_guide\matching\

process_shape_model.hdev, which locates the arrows that are shown in Figure 3.4.

Step 1: Select the arrow

There, an initial ROI is created around the arrow, without trying to exclude clutter (see figure 3.4a).

S
ha

pe
-B

as
ed

B-68 The Individual Approaches

model for
Contrast = 30

model for
Contrast = 90

model for
Contrast = 134

final ROI final modelprocessed region

a)

b)

c)

d)

Figure 3.4: Processing the result of inspect_shape_model: a) interactive ROI; b) models for different
values of Contrast; c) processed model region and corresponding ROI and model; d) result
of the search.

gen_rectangle1 (ROI, 361, 131, 406, 171)

reduce_domain (ModelImage, ROI, ImageROI)

Step 2: Create a first model region

Then, this ROI is inspected via inspect_shape_model.

inspect_shape_model (ImageROI, ShapeModelImage, ShapeModelRegion, 1, 30)

Figure 3.4b shows the shape model regions that would be created for different values of the parameter
Contrast. As you can see, you cannot remove the clutter without losing characteristic points of the
arrow itself.

Step 3: Process the model region

This problem can be solved by exploiting the fact that the operator inspect_shape_model returns the
shape model region. Thus, you can process it like any other region. The main idea to get rid of the clutter

3.3 Shape-Based Matching B-69

is to use the morphological operator opening_circle, which eliminates small regions. Before this, the
operator fill_up must be called to fill the inner part of the arrow, because only the boundary points are
part of the (original) model region.

fill_up (ShapeModelRegion, FilledModelRegion)

opening_circle (FilledModelRegion, ROI, 3.5)

Step 4: Create the final model

The obtained region is then used to create the model for a matching that locates all arrows successfully.
Figure 3.4c shows the processed region, the corresponding region of interest, and the final model region.

create_shape_model (ImageROI, 3, 0, rad(360), 'auto', 'none', \

'use_polarity', 30, 15, ModelID)

3.3.3 Create a Suitable Shape Model

Having derived the template image from the reference image, the shape model can be created. Note that
the shape-based matching consists of different methods to find the trained objects in images. Depending
on the selected method, one of the following operators is used to create the model:

• create_shape_model creates a model for a simple shape-based matching that uses a template
image to derive the model and which supports no scaling.

• create_shape_model_xld creates a model for a simple shape-based matching that uses an XLD
contour to derive the model and which supports no scaling.

• create_scaled_shape_model creates a model for a shape-based matching that uses a template
image to derive the model and which supports a uniform scaling.

• create_scaled_shape_model_xld creates a model for a shape-based matching that uses an
XLD contour to derive the model and which supports a uniform scaling.

• create_aniso_shape_model creates a model for a shape-based matching that uses a template
image to derive the model and which supports anisotropic scaling.

• create_aniso_shape_model_xld creates a model for a shape-based matching that uses an XLD
contour to derive the model and which supports anisotropic scaling.

Note that if you derive your model from an XLD contour, after a first match, it is strongly recommended
to determine the polarity information for the model with set_shape_model_metric (see section 3.3.3.5
on page 75 and section 2.1.3.2 on page 25 for details).

In the following, the described parameters belong to the operator create_scaled_shape_model if not
stated otherwise.

As the name “shape-based matching” suggests, objects are represented and recognized by their shape.
There exist multiple ways to determine or describe the shape of an object. Here, the shape is extracted by

S
ha

pe
-B

as
ed

B-70 The Individual Approaches

selecting all those points whose neighboring contrast exceeds a certain threshold. Typically, the points
are part of the contours of the object (see, e.g., figure 3.2 on page 65). Here, we will take a closer look at
how to adjust the corresponding parameters. In particular, you can

• specify which pixels are part of the model by adjusting the parameter Contrast (section 3.3.3.1
on page 71),

• speed up the search by using a subsampling, i.e., by adjusting the parameter NumLevels, and
by reducing the number of model points, i.e., by adjusting the parameter Optimization (sec-
tion 3.3.3.2 on page 72),

• allow a specific range of orientation by adjusting the parameters AngleExtent, AngleStart, and
AngleStep (section 3.3.3.3 on page 73),

• allow a specific range of scale by adjusting the parameters ScaleMin, ScaleMax, and ScaleStep

or the corresponding parameters for anisotropic scaling (section 3.3.3.4 on page 74), and

• specify which pixels are compared with the model in the later search by adjusting the parameters
MinContrast and Metric (section 3.3.3.5 on page 75).

Note that when adjusting the parameters you can also let HALCON assist you:

• Apply inspect_shape_model:

Before creating the model, you can apply the operator inspect_shape_model to the template
image to try different values for the parameters NumLevels and Contrast. The operator returns
the resulting representation of a shape model with multiple pyramid levels and thus allows you
to visually check if the object of interest is represented adequately by the model. If several com-
binations of parameter values do not lead to a satisfying representation of the object, maybe the
template image, i.e., the model’s ROI was not selected properly. How to select a suitable ROI is
described in section 2.1 on page 19.

• Use automatic parameter suggestion:

For many parameters you can let HALCON suggest suitable parameters. Then, you can either
set the corresponding parameters to the value ’auto’ within create_shape_model (or one of
its equivalents), or you apply determine_shape_model_params to automatically determine pa-
rameters for a shape model from a template image and then decide individually if you use the
suggested values for the creation of the shape model. Note that both approaches return only ap-
proximately the same values and create_shape_model (or one of its equivalents) returns the
more precise values.

Note that after the creation of the model, the model can still be modified. In section 3.3.3.6 on page 77
the possibilities for the inspection and modification of an already created model are shown.

3.3 Shape-Based Matching B-71

3.3.3.1 Specify Pixels that are Part of the Model (Contrast)

For the model those pixels are selected whose contrast, i.e., gray value difference to neighboring pixels,
exceeds a threshold specified by the parameter Contrast when calling create_shape_model or one
of its equivalents. In order to obtain a suitable model the contrast should be chosen in such a way that the
significant pixels of the object are included, i.e., those pixels that characterize it and allow to discriminate
it clearly from other objects or from the background. Obviously, the model should not contain clutter,
i.e., structures that do not belong to the object.

In some cases it is impossible to find a single value for Contrast that removes the clutter but not also
parts of the object. Figure 3.5 shows an example. The task is to create a model for the outline of the pad.
If the complete outline is selected, the model also contains clutter (figure 3.5a). If the clutter is removed,
parts of the outline are missing (figure 3.5b).

a) b)

c) d)

Figure 3.5: Selecting significant pixels via Contrast: a) complete object containing clutter; b) little clutter
but incomplete object; c) hysteresis threshold; d) minimum contour size.

To solve this problem, the parameter Contrast provides two additional methods: a hysteresis threshold-
ing and the selection of contour parts based on their size. Both methods are used by specifying a tuple
of values for Contrast instead of a single value.

Hysteresis thresholding (see also the operator hysteresis_threshold) uses two thresholds, a lower
and an upper threshold. For the model, first pixels that have a contrast higher than the upper threshold
are selected. Then, pixels that have a contrast higher than the lower threshold and that are connected
to a high-contrast pixel, either directly or via another pixel with contrast above the lower threshold, are
added. This method enables you to select contour parts whose contrast is locally low. Returning to the
example with the pad: As you can see in figure 3.5c, with a hysteresis threshold you can create a model
for the complete outline of the pad without clutter. The following line of code shows how to specify the
two thresholds in a tuple:

S
ha

pe
-B

as
ed

B-72 The Individual Approaches

inspect_shape_model (ImageReduced, ModelImages, ModelRegions, 2, [40,70])

The second method to remove clutter is to specify a minimum size, i.e., number of pixels, for the contour
components. Figure 3.5d shows the result for the example task. The minimum size must be specified in
the third element of the tuple. If you do not want to additionally use a hysteresis threshold, you have to
set the first two elements to the same value:

inspect_shape_model (ImageReduced, ModelImages, ModelRegions, 2, [40,40,30])

Alternative methods to remove clutter are to modify the ROI as described in section 3.3.2 on page 67 or
create a synthetic model (see section 2.1.3.1 on page 24).

Note that you can let HALCON select suitable values itself by specifying the value ’auto’ for Con-
trast. If you want to specify some of the three contrast parameters and let HALCON determine the
rest, please refer to the Reference Manual for detailed information.

3.3.3.2 Speed Up the Search using Subsampling and Point Reduction (NumLevels, Op-
timization)

To speed up the matching process, subsampling can be used (see also section 2.3.2 on page 30). There, an
image pyramid is created, consisting of the original, full-sized image and a set of downsampled images.
The model is then created and searched on the different pyramid levels.

You can specify how many pyramid levels are used via the parameter NumLevels. We recommend to
choose the highest pyramid level at which the model contains at least 10-15 pixels and in which the shape
of the model still resembles the shape of the object.

A much easier method is to let HALCON select a suitable value itself by specifying the value ’auto’
for NumLevels. You can then query the used value via the operator get_shape_model_params.

A further reduction of model points can be enforced via the parameter Optimization. This may be
useful to speed up the matching in the case of particularly large models. Again, we recommend to
specify the value ’auto’ to let HALCON select a suitable value itself. Please note that regardless of
your selection all points passing the contrast criterion are displayed, i.e., you cannot check which points
are part of the model.

With an optional second value, you can specify whether the model is pregenerated completely for the
allowed range of rotation and scale (see the following sections) or not. By default, the model is not
pregenerated. You can pregenerate the model and thereby possibly speed up the matching process by
passing ’pregeneration’ as the second value of Optimization. Note, however, that if you allow
large ranges of rotation and/or scaling, the memory requirements rise. Another effect is that the pro-
cess of creating the model takes significantly more time. In most cases, it is not recommended to!
pregenerate the model.

Note that if you want to set the number of pyramid levels manually, you can inspect the template
image pyramid using the operator inspect_shape_model, e.g., as shown in the HDevelop pro-
gram solution_guide\matching\first_example_shape_matching.hdev. After the call to in-

spect_shape_model, the model regions on the selected pyramid levels are displayed in HDevelop’s

3.3 Shape-Based Matching B-73

Graphics Window. You can have a closer look at them using the online zooming (menu entry Visu-

alization . Zoom Window). The code lines following the operator call loop through the pyramid and
determine the highest level on which the model contains at least 15 points. This value is then used in the
call to the operator create_shape_model.

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)

area_center (ShapeModelRegions, AreaModelRegions, RowModelRegions, \

ColumnModelRegions)

count_obj (ShapeModelRegions, HeightPyramid)

for i := 1 to HeightPyramid by 1

if (AreaModelRegions[i - 1] >= 15)

NumLevels := i

endif

endfor

create_shape_model (ImageROI, NumLevels, 0, rad(360), 'auto', 'none', \

'use_polarity', 30, 10, ModelID)

Note that the operator inspect_shape_model returns the pyramid images in form of an image tuple
(array). The individual images can be accessed like the model regions with the operator select_obj.
Please note that object tuples start with the index 1, whereas control parameter tuples start with

!the index 0!

3.3.3.3 Allow a Range of Orientation (AngleExtent, AngleStart, AngleStep)

If the object’s rotation may vary in the search images you can specify the allowed range in the parameter
AngleExtent and the starting angle of this range in the parameter AngleStart (unit: radians). Note
that the range of rotation is defined relative to the reference image, i.e., a starting angle of 0 corresponds
to the orientation the object has in the reference image. Therefore, to allow rotations up to +/-5◦, e.g.,
you should set the starting angle to -rad(5) and the angle extent to rad(10).

Note that you can further limit the allowed range when calling the operator find_shape_model or one
of its equivalents during the search (see section 3.3.4.2 on page 79). Thus, if you want to reuse a model
for different tasks requiring a different range of angles, you can use a large range when creating the
model and a smaller range for the search.

If the object is (almost) symmetric you should limit the allowed range. Otherwise, the search process
will find multiple, almost equally good matches on the same object at different angles. Which match (at
which angle) is returned as the best can therefore “jump” from image to image. The suitable range of
rotation depends on the symmetry: For a cross-shaped or square object the allowed extent must be less
than 90◦, for a rectangular object less than 180◦, and for a circular object 0◦ (see figure 3.6).

If you pregenerate the model (see page 72), a large range of rotation also leads to high memory require-
ments. Thus, in this special case, it is recommended to limit the allowed range of rotation already during
the creation of the model as much as possible in order to speed up the search process.

During the matching process, the model is searched for in different angles within the allowed range, at
steps specified with the parameter AngleStep. If you select the value ’auto’, HALCON automatically
chooses an optimal step size φopt to obtain the highest possible accuracy by determining the smallest
rotation that is still discernible in the image. The underlying algorithm is explained in figure 3.7: The

S
ha

pe
-B

as
ed

B-74 The Individual Approaches

180° 120° 90° 180° 0° 90°

Figure 3.6: Suitable angle ranges for rotation symmetric objects.

rotated version of the cross-shaped object is clearly discernible from the original if the point that lies
farthest from the center of the object is moved by at least 2 pixels. Therefore, the corresponding angle
φopt is calculated as follows:

d2 = l2 + l2 − 2 · l · l · cosφ ⇒ φopt = arccos

(
1− d2

2 · l2

)
= arccos

(
1− 2

l2

)
with l being the maximum distance between the center and the object boundary and d = 2 pixels. For
some models, the such estimated angle step size is still too large. In these cases, it is divided by 2
automatically.

φ
d

l

l

Figure 3.7: Determining the minimum angle step size from the extent of the model.

The automatically determined angle step size φopt is suitable for most applications. Therefore, we rec-
ommend to select the value ’auto’. You can query the used value after the creation via the operator
get_shape_model_params. By selecting a higher value you can speed up the search process, how-
ever, at the cost of a decreased accuracy of the estimated orientation. Note that for very high values the
matching may fail altogether!

The value chosen for AngleStep should not deviate too much from the optimal value (13φopt ≤ φ ≤
3φopt). Note that choosing a very small step size does not result in an increased angle accuracy!

3.3.3.4 Allow a Range of Scale (Scale*Min, Scale*Max, Scale*Step)

Similarly to the range of orientation, you can specify an allowed range of scale. You can allow for scaling
in two forms:

• identical scaling in row and column direction (uniform scaling)

• different scaling in row and column direction (anisotropic scaling)

3.3 Shape-Based Matching B-75

For a uniform scaling, you specify the range of scale with the parameters ScaleMin, ScaleMax, and
ScaleStep of the operator create_scaled_shape_model. For anistropic scaling, you use the operator
create_aniso_shape_model instead, with six scale parameters instead of the three above.

Note that you can further limit the allowed range when calling the operator find_scaled_shape_model
or find_aniso_shape_model (see section 3.3.4.2 on page 79). Thus, if you want to reuse a model for
different tasks requiring a different range of scale, you can use a large range when creating the model
and a smaller range for the search.

If you pregenerate the model (see page 72), a large range of scale also leads to high memory require-
ments. Thus, in this special case, it is recommended to limit the allowed range of scale already during
the creation of the model as much as possible in order to speed up the search process.

Note that if you are searching for the object on a large range of scales you should create the model based
on a large scale because HALCON cannot “guess” model points when precomputing model instances at
scales larger than the original one. On the other hand, NumLevels should be chosen such that the highest
level contains enough model points also for the smallest scale.

If you select the value ’auto’ for the parameter ScaleStep (or the equivalents for anisotropic scaling),
HALCON automatically chooses a suitable step size to obtain the highest possible accuracy by deter-
mining the smallest scale change that is still discernible in the image. Similarly to the angle step size
(see figure 3.7 on page 74), a scaled object is clearly discernible from the original if the point that lies
farthest from the center of the object is moved by at least 2 pixels. Therefore, the corresponding scale
change ∆sopt is calculated as follows:

∆s =
d

l
⇒ ∆sopt =

2

l

with l being the maximum distance between the center and the object boundary and d = 2 pixels. For
some models, the such estimated scale step size is still too large. In these cases, it is divided by 2
automatically.

The automatically determined scale step size is suitable for most applications. Therefore, we recom-
mend to select the value ’auto’. By selecting a higher value you can speed up the search process,
however, at the cost of a decreased accuracy of the estimated scale. Note that for very high values the
matching may fail altogether!

The value chosen for ScaleStep should not deviate too much from the optimal value (13∆sopt ≤ ∆s ≤
3∆sopt). Note that choosing a very small step size does not result in an increased scale accuracy!

3.3.3.5 Specify which Pixels are Compared with the Model (MinContrast, Metric)

For efficiency reasons the model contains information that influences the search process: With the pa-
rameter MinContrast you can specify which contrast a point in a search image must at least have in
order to be compared with the model. The main use of this parameter is to exclude noise, i.e., gray value
fluctuations, from the matching process. You can let HALCON select suitable values itself by specify-
ing the value ’auto’ for MinContrast. As the value is estimated from the noise in the reference image,
the automatic parameter selection is suitable only if the noise in the reference image is expected to be
similar to the noise in the search images. If a synthetic model is used, which contains no noise, MinCon-
trast is automatically set to 0 and must be set to a higher value manually. Note that you can change

S
ha

pe
-B

as
ed

B-76 The Individual Approaches

the value for MinContrast also in a later step using set_shape_model_param (see section 3.3.4.9 on
page 87).

The parameter Metric lets you specify whether and how the polarity, i.e., the direction of the contrast
must be observed (see figure 3.8). If you choose the value ’use_polarity’ the polarity is observed,
i.e., the points in the search image must show the same direction of the contrast as the corresponding
points in the model. If, e.g., the model is a bright object on a dark background, the object is found in the
search images only if it is also brighter than the background.

You can choose to ignore the polarity globally by selecting the value ’ignore_global_polarity’. In
this mode, an object is recognized also if the direction of its contrast reverses, e.g., if your object can
appear both as a dark shape on a light background and vice versa. This flexibility, however, is obtained
at the cost of a slightly lower recognition speed.

If you select the value ’ignore_local_polarity’, the object is found even if the contrast changes
locally. This mode can be useful, e.g., if the object consists of a part with a medium gray value, within
which either darker or brighter sub-objects lie. Please note however, that the recognition speed and the
robustness may decrease dramatically in this mode, especially if you allowed a large range of rotation
(see section 3.3.3.3 on page 73).

Template Image Search Images

model found with:

’use_polarity’
’ignore_global_polarity’
’ignore_local_polarity’

model found with: model found with:

’ignore_global_polarity’
’ignore_local_polarity’ ’ignore_local_polarity’

Figure 3.8: The parameter Metric specifies how to consider the polarity of the model.

If you select the value ’ignore_color_polarity’, you can perform the matching in color images
(or, more generally, in multi-channel images). An example is examples\hdevelop\Applications\
Position-Recognition-2D\matching_multi_channel_yogurt.dev.

If you created your model from XLD contours, there is no information about the polarity of
the model available. Thus, when creating the model, the value of Metric must be set to ’ig-

nore_local_polarity’. When a first matching was successful, you can use the matching results
to get the transformation parameters (using vector_angle_to_rigid) that are needed to project
the contour onto the search image. Then, with the operator set_shape_model_metric you can
determine the polarity of the first search image, which is used as training image for the polarity,
and set the match metric to ’use_polarity’ or ’ignore_global_polarity’. Using the value
’use_polarity’, i.e., if the following search images have the same polarity as the training image,
the search becomes faster and more robust. An example is examples\hdevelop\Matching\Shape-
Based\create_shape_model_xld.dev. Note that set_shape_model_metric is only available for!
models that are created from XLD contours!

3.3 Shape-Based Matching B-77

3.3.3.6 Inspect and Modify the Shape Model

If you want to visually inspect an already created shape model, you can use
get_shape_model_contours to get the XLD contours that represent the model in a specific
pyramid level. Note that the XLD contour of the model is located at the origin of the image and thus a
transformation may be needed for a proper visualization (see section 2.4.2 on page 35).

To inspect the current parameter values of a model, you query them with get_shape_model_params.
This may be necessary if during the creation of the model an automatic parameter selection was used or
if the model was created within another program, saved to file with write_shape_model, and read from
this file in the current program with read_shape_model. Additionally, you can query the coordinates
of the origin of the model using get_shape_model_origin.

After the creation of the model and before you search the object in a search image, you can further modify
the model. In particular, you can apply set_shape_model_param to change individual parameters and
set_shape_model_origin to change the origin of the model. Note that the latter expects not the
absolute position of a new point of reference as parameters, but its distance to the default point of
reference. That is, the value of the model’s origin can also become negative, e.g., [-20, -40]. But please
note that by modifying the point of reference, the accuracy of the estimated position may decrease (see
section 3.3.4.7 on page 85). Thus, if possible, the point of reference should not be changed.

!

3.3.4 Optimize the Search Process

The actual matching is performed by one of the following operators:

• find_shape_model searches for instances of a single model and is used if the instances of the
model may not vary in scale,

• find_shape_models simultaneously searches for instances of multiple models and is used if the
instances of the model may not vary in scale,

• find_scaled_shape_model searches for instances of a single model and is used if a uniform
scaling is allowed,

• find_scaled_shape_models simultaneously searches for instances of multiple models and is
used if a uniform scaling is allowed,

• find_aniso_shape_model searches for instances of a single model and is used if different scal-
ing factors in row and column direction are allowed, and

• find_aniso_shape_models simultaneously searches for instances of multiple models and is
used if different scaling factors in row and column direction are allowed.

In the following, we show how to select suitable parameters for these operators to adapt and optimize a
matching task. In particular, we show how to

• restrict the search space to a region of interest (section 3.3.4.1),

S
ha

pe
-B

as
ed

B-78 The Individual Approaches

• restrict the search space by restricting the range of orientation and scale via the parameters
AngleStart, AngleExtent, ScaleMin, and ScaleMax or the corresponding parameters for
anisotropic scaling (section 3.3.4.2 on page 79),

• restrict the search space to a specific amount of allowed occlusions for the object, i.e., specify the
visibility of the object via the parameter MinScore (section 3.3.4.3 on page 80),

• specify the used search heuristics, i.e., trade thoroughness versus speed by adjusting the parameter
Greediness (section 3.3.4.4 on page 81),

• search for multiple instances of the model by adjusting the parameters NumMatches and Max-

Overlap (section 3.3.4.5 on page 82),

• search for multiple models simultaneously by adjusting the parameter ModelIDs (section 3.3.4.6
on page 83),

• specify the accuracy that is needed for the results by adjusting the parameter SubPixel (sec-
tion 3.3.4.7 on page 85),

• restrict the number of pyramid levels (NumLevels) for the search process (section 3.3.4.8 on page
86),

• set the parameters ’timeout’ and ’min_contrast’ via the operator set_shape_model_param
(section 3.3.4.9 on page 87), and

• optimize the matching speed (section 3.3.4.10 on page 87).

Note that many matching approaches can be used only to search a single instance of a single model in
an image, whereas the shape-based matching additionally can be used to search for several instances of
multiple models simultaneously.

At the end of the matching, the model and further buffered data have to be cleared from memory with
clear_shape_model. If you want to reuse a model, you have to store it into a file before clearing it
from memory. Then, you can read it from file again as described in section 2.2 on page 28.

3.3.4.1 Restrict the Search to a Region of Interest

The obvious way to restrict the search space is to apply the operator find_shape_model (or one of its
equivalents) not to the whole image but only to an ROI. Figure 3.9 shows such an example. The reduction
of the search space can be realized in a few lines of code.

Step 1: Create a region of interest

First, you create a region, e.g., with the operator gen_rectangle1 (see section 2.1.1 on page 20 for
more ways to create regions).

Row1 := 141

Column1 := 159

Row2 := 360

Column2 := 477

gen_rectangle1 (SearchROI, Row1, Column1, Row2, Column2)

3.3 Shape-Based Matching B-79

Step 2: Restrict the search to the region of interest

Then, each search image is reduced to this ROI using the operator reduce_domain. In this example, the
search speed is almost doubled using this method.

for i := 1 to 20 by 1

grab_image (SearchImage, FGHandle)

reduce_domain (SearchImage, SearchROI, SearchImageROI)

find_shape_model (SearchImageROI, ModelID, 0, rad(360), 0.7, 1, 0.5, \

'interpolation', 0, 0.7, RowCheck, ColumnCheck, \

AngleCheck, Score)

endfor

Note that by restricting the search to an ROI you actually restrict the position of the point of reference of
the model, i.e., the center of gravity of the model ROI (see section 2.1.2 on page 21). This means that the
size of the search ROI corresponds to the extent of the allowed movement. For example, if your object
can move ± 10 pixels vertically and ± 15 pixels horizontally you can restrict the search to an ROI of the
size 20×30. In order to assure a correct boundary treatment on higher pyramid levels, we recommend to
enlarge the ROI by 2NumLevels−1 pixels in each direction. Thus, if you specified NumLevels = 4, you
can restrict the search to an ROI of the size 36×46.

Please note that even if you modified the point of reference using set_shape_model_origin (which
is not recommended), the original one, i.e., the center point of the model ROI, is used during the search.
Thus, you must always specify the search ROI relative to the original point of reference.

3.3.4.2 Restrict the Range of Orientation and Scale (AngleStart, AngleExtent, ScaleMin,
ScaleMax)

When creating the model you already specified the allowed range of orientation and scale (see sec-
tion 3.3.3.3 on page 73 and section 3.3.3.4 on page 74). When calling the operator find_shape_model
or one of its equivalents you can further limit these ranges with the parameters AngleStart, AngleEx-
tent, ScaleMin, and ScaleMax (or the corresponding scale parameters for anisotropic scaling). This

Figure 3.9: Searching in a region of interest.

S
ha

pe
-B

as
ed

B-80 The Individual Approaches

b) c)a)

Figure 3.10: Searching for partly occluded objects: a) model of the security ring; b) search result for
MinScore = 0.8; c) search result for MinScore = 0.7.

is useful if you can restrict these ranges by other information, which can, e.g., be obtained by suitable
image processing operations.

Another reason for using a larger range when creating the model may be that you want to reuse the model
for other matching tasks as well.

Note that, if the scale range for the creation of the model is larger than the range used for the search, the
model might be found in the search image even if it is slightly outside of the more restricted scale range.

3.3.4.3 Specify the Visibility of the Object (MinScore)

With the parameter MinScore you can specify how much of the model must be visible. A typical use
of this mechanism is to allow a certain degree of occlusion as demonstrated in figure 3.10: The security
ring is found if MinScore is set to 0.7.

Let’s take a closer look at the term “visibility”: When comparing a part of a search image with the model,
the matching process calculates the so-called score, which is primarily a measure of how many model
points could be matched to points in the search image (ranging from 0 to 1). A model point may be
“invisible” and thus not matched because of multiple reasons:

• Parts of the object’s contour are occluded, e.g., as depicted in figure 3.10.

Please note that by default objects are not found if they are clipped at the image border.!
This behavior can be changed with set_system(’border_shape_models’,’true’).
An example is examples\hdevelop\Applications\Position-Recognition-2D\

matching_image_border.dev.

Note that the runtime of the search will increase in this mode.

• Parts of the contour have a contrast lower than specified in the parameter MinContrast when
creating the model (see section 3.3.3.5 on page 75).

• The polarity of the contrast changes globally or locally (see section 3.3.3.5 on page 75).

• If the object is deformed, which includes also the case that the camera observes the scene under an
oblique angle, parts of the contour may be visible but appear at an incorrect position and therefore
do not fit the model anymore. Note that deformed objects might be found if you set the parameter
’SubPixel’ to ’max_deformation’ (see section 3.3.4.7 on page 85). Additionally, deformed
or defocused objects might be found if the increased tolerance mode is activated. For that the

3.3 Shape-Based Matching B-81

AngleStep = 20 AngleStep = 30

Figure 3.11: The effect of a large AngleStep on the matching.

lowest pyramid level has to be specified negatively within NumLevels. Then, the matches on the
lowest pyramid level that still provides matches are returned. How to handle the specific case of
perspective deformations that occur because of an oblique camera view is described in section 3.3.6
on page 91.

Besides these obvious reasons, which have their root in the search image, there are some not so obvious
reasons caused by the matching process itself:

• As described in section 3.3.3.3 on page 73, HALCON precomputes the model for intermediate
angles within the allowed range of orientation. During the search, a candidate match is then com-
pared to all precomputed model instances. If you select a value for the parameter AngleStep that
is significantly larger than the automatically selected minimum value, the effect depicted in fig-
ure 3.11 can occur: If the object lies between two precomputed angles, points lying far from the
center are not matched to a model point, and therefore the score decreases.

Of course, the same line of reasoning applies to the parameter ScaleStep and its variants for
anisotropic scaling (see section 3.3.3.4 on page 74).

• Another stumbling block lies in the use of an image pyramid which was introduced in sec-
tion 3.3.3.2 on page 72: When comparing a candidate match with the model, the specified min-
imum score must be reached on each pyramid level. However, on different levels the score may
vary, with only the score on the lowest level being returned in the parameter Score. This some-
times leads to the apparently paradox situation that MinScore must be set significantly lower than
the resulting Score. Note that if the matches are not tracked to the lowest pyramid level it might
happen that instances with a score slightly below MinScore are found.

Recommendation: The higher MinScore, the faster the search!

3.3.4.4 Trade Thoroughness vs. Speed (Greediness)

With the parameter Greediness you can influence the search algorithm itself and thereby trade thor-
oughness against speed. If you select the value 0, the search is thorough, i.e., if the object is present
(and within the allowed search space and reaching the minimum score), it will be found. In this mode,
however, even very unlikely match candidates are also examined thoroughly, thereby slowing down the
matching process considerably.

S
ha

pe
-B

as
ed

B-82 The Individual Approaches

a) c)

e)d)b)

Figure 3.12: A closer look at overlapping matches: a) model of the security ring; b) model overlap; c) small-
est rectangle surrounding the model; d) rectangle overlap; e) pathological case.

The main idea behind the “greedy” search algorithm is to break off the comparison of a candidate with
the model when it seems unlikely that the minimum score will be reached. In other words, the goal is
not to waste time on hopeless candidates. This greediness, however, can have unwelcome consequences:
In some cases a perfectly visible object is not found because the comparison “starts out on a wrong foot”
and is therefore classified as a hopeless candidate and broken off.

You can adjust the Greediness of the search, i.e., how early the comparison is broken off, by selecting
values between 0 (no break off: thorough but slow) and 1 (earliest break off: fast but unsafe). Note
that the parameters Greediness and MinScore interact, i.e., you may have to specify a lower minimum
score in order to use a greedier search. Generally, you can reach a higher speed with a high greediness
and a sufficiently lowered minimum score.

3.3.4.5 Search for Multiple Instances of the Object (NumMatches, MaxOverlap)

All you have to do to search for more than one instance of the object is to set the parameter NumMatches
accordingly. The operator find_shape_model (or one of its equivalents) then returns the matching
results as tuples in the parameters Row, Column, Angle, Scale (or its variants for anisotropic scaling),
and Score. If you select the value 0, all matches are returned.

Note that a search for multiple objects is only slightly slower than a search for a single object.

A second parameter, MaxOverlap, lets you specify how much two matches may overlap (as a fraction).
In figure 3.12b, e.g., the two security rings overlap by a factor of approximately 0.2. In order to speed up
the matching as far as possible, however, the overlap is calculated neither for the models themselves nor

3.3 Shape-Based Matching B-83

for the model’s ROI but for their smallest surrounding rectangle. This must be kept in mind when speci-
fying the maximum overlap. In most cases, therefore a larger value is needed (e.g., compare figure 3.12b
and figure 3.12d).

Figure 3.12e shows a “pathological” case: Even though the rings themselves do not overlap, their sur-
rounding rectangles do to a large degree. Unfortunately, this effect cannot be prevented.

3.3.4.6 Search for Multiple Models Simultaneously (ModelIDs)

If you are searching for instances of multiple models in a single image, you can of course
call the operator find_shape_model, find_scaled_shape_model, or find_aniso_shape_model
multiple times. But a much faster alternative is to use the operators find_shape_models,
find_scaled_shape_models, or find_aniso_shape_models instead. These operators expect simi-
lar parameters, with the following differences:

• With the parameter ModelIDs you can specify a tuple of model IDs instead of a single one. As
when searching for multiple instances (see section 3.3.4.5 on page 82), the matching result param-
eters Row etc. return tuples of values.

• The output parameter Model shows to which model each found instance belongs. Note that the
parameter does not return the model IDs themselves but the index of the model ID in the tuple
ModelIDs (starting with 0).

• The search is always performed in a single image. However, you can restrict the search to a certain
region for each model individually by passing an image tuple (see below for an example).

• You can either use the same search parameters for each model by specifying single values for
AngleStart etc., or pass a tuple containing individual values for each model.

• You can also search for multiple instances of multiple models. If you search for a certain number
of objects independent of their type (model ID), specify this (single) value in the parameter Num-
Matches. By passing a tuple of values, you can specify for each model individually how many
instances are to be found. In this tuple, you can mix concrete values with the value 0. The tuple
[3,0], e.g., specifies to return the best three instances of the first model and all instances of the
second model.

Similarly, if you specify a single value for MaxOverlap, the operators check whether a found
instance is overlapped by any of the other instances independent of their type. By specifying a
tuple of values, each instance is only checked against all other instances of the same type.

The example HDevelop program solution_guide\matching\multiple_models.hdev uses the op-
erator find_scaled_shape_models to search simultaneously for the rings and nuts depicted in fig-
ure 3.13.

Step 1: Create the models

First, two models are created, one for the rings and one for the nuts. The two model IDs are then
concatenated into a tuple using the operator assign.

S
ha

pe
-B

as
ed

B-84 The Individual Approaches

b)a)

Figure 3.13: Searching for multiple models : a) models of ring and nut; b) search ROIs for the two models.

create_scaled_shape_model (ImageROIRing, 'auto', -rad(22.5), rad(45), \

'auto', 0.8, 1.2, 'auto', 'none', \

'use_polarity', 60, 10, ModelIDRing)

create_scaled_shape_model (ImageROINut, 'auto', -rad(30), rad(60), 'auto', \

0.6, 1.4, 'auto', 'none', 'use_polarity', 60, \

10, ModelIDNut)

ModelIDs := [ModelIDRing,ModelIDNut]

Step 2: Specify individual search ROIs

In the example, the rings and nuts appear in non-overlapping parts of the search image. Therefore, it is
possible to restrict the search space for each model individually. As explained in section 3.3.4.1 on page
78, a search ROI corresponds to the extent of the allowed movement. Thus, narrow horizontal ROIs can
be used in the example (see figure 3.13b).

The two ROIs are concatenated into a region array (tuple) using the operator concat_obj and then
“added” to the search image using the operator add_channels, i.e., in each region the corresponding
gray values of the search image are “painted”. The result of this operator is an array of two images, both
having the same image matrix. The domain of the first image is restricted to the first ROI and the domain
of the second image is restricted to the second ROI.

gen_rectangle1 (SearchROIRing, 110, 10, 130, Width - 10)

gen_rectangle1 (SearchROINut, 315, 10, 335, Width - 10)

concat_obj (SearchROIRing, SearchROINut, SearchROIs)

add_channels (SearchROIs, SearchImage, SearchImageReduced)

3.3 Shape-Based Matching B-85

Step 3: Find all instances of the two models

Now, the operator find_scaled_shape_models is applied to the created image array. Because the
two models allow different ranges of rotation and scaling, tuples are specified for the corresponding
parameters. In contrast, the other parameters are valid for both models. Section 3.3.5.2 on page 90
shows how to access the matching results.

find_scaled_shape_models (SearchImageReduced, ModelIDs, [-rad(22.5), \

-rad(30)], [rad(45),rad(60)], [0.8,0.6], [1.2, \

1.4], 0.7, 0, 0, 'least_squares', 0, 0.8, \

RowCheck, ColumnCheck, AngleCheck, ScaleCheck, \

Score, ModelIndex)

3.3.4.7 Specify the Needed Accuracy (SubPixel)

During the matching process, candidate matches are compared with instances of the model at different
positions, angles, and scales. For each instance, the resulting matching score is calculated. If you set
the parameter SubPixel to ’none’, the resulting parameters Row, Column, Angle, and Scale (or the
corresponding parameters for anisotropic scaling) contain the corresponding values of the best match.
In this case, the accuracy of the position is therefore 1 pixel, while the accuracy of the orientation and
scale is equal to the values selected for the parameters AngleStep and ScaleStep (or the corresponding
parameters for anisotropic scaling), respectively, when creating the model (see section 3.3.3.3 on page
73 and section 3.3.3.4 on page 74).

If you set the parameter SubPixel to ’interpolation’, HALCON examines the matching scores at
the neighboring positions, angles, and scales around the best match and determines the maximum by
interpolation. Using this method, the position is therefore estimated with subpixel accuracy (≈ 1

20 pixel
can be achieved). The accuracy of the estimated orientation and scale depends on the size of the object,
like the optimal values for the parameters AngleStep and ScaleStep or the corresponding parameters
for anisotropic scaling (see section 3.3.3.3 on page 73 and section 3.3.3.4 on page 74): The larger the
size, the more accurately the orientation and scale can be determined. For example, if the maximum
distance between the center and the boundary is 100 pixel, the orientation is typically determined with
an accuracy of ≈ 1

10
◦.

Recommendation: Because the interpolation is very fast, you can set SubPixel to ’interpolation’

in most applications.

When you set the parameter SubPixel to ’least_squares’, ’least_squares_high’, or
’least_squares_very_high’, a least-squares adjustment is used instead of an interpolation, resulting
in a higher accuracy. However, this method requires additional computation time.

Sometimes objects are not found or found only with a low accuracy because they are slighly deformed
compared to the model. If your object is most probably deformed, you can allow a maximum deformation
of a few pixels for the model by setting SubPixel additionally to ’max_deformation ’, which is
followed by the number of pixels allowed for the deformation. For example, if you set SubPixel to
’max_deformation 2’, the contour of the searched object may differ by up to two pixels from the
shape of the model. To get a meaningful score value and to avoid erroneous matches, we recommend
to always combine the allowance of a deformation with a least-squares adjustment. Note that high
values for the maximal allowed deformation increase the runtime and the risk of finding wrong model

S
ha

pe
-B

as
ed

B-86 The Individual Approaches

instances, especially for small models. Thus, the value should be chosen as small as possible but as high
as necessary.

Please note that the accuracy of the estimated position may decrease if you modify the point of!
reference using set_shape_model_origin! This effect is visualized in figure 3.14: As you can see
in the right-most column, an inaccuracy in the estimated orientation “moves” the modified point of
reference, while the original point of reference is not affected. The resulting positional error depends
on multiple factors, e.g., the offset of the point of reference and the orientation of the found object. The
main point to keep in mind is that the error increases linearly with the distance of the modified point of
reference from the original one (compare the two rows in figure 3.14).

An inaccuracy in the estimated scale also results in an error in the estimated position, which again
increases linearly with the distance between the modified and the original point of reference.

For maximum accuracy in case the point of reference is moved, the position should be determined us-
ing the least-squares adjustment. Note that the accuracy of the estimated orientation and scale is not
influenced by modifying the point of reference.

p. of ref.
new p. of ref.

original

model rotation rotation inaccuracy

Figure 3.14: Two examples for the effect of the inaccuracy of the estimated orientation on a moved point
of reference.

3.3.4.8 Restrict the Number of Pyramid Levels (NumLevels)

The parameter NumLevels, which you already specified when creating the model, allows you to use
a different (in most cases a more restrictive) value in the search process. By using the value 0 for
NumLevels, the value specified when creating the model is used.

Optionally, NumLevels can contain a second value, so that you can specify not only the highest but also
the lowest pyramid level used for the search. If the search is finished on a pyramid level that is higher

3.3 Shape-Based Matching B-87

than the first pyramid level, which corresponds to the original, full-sized image, the search becomes
faster. On the other hand, the search is then also less robust and less accurate. If objects should be found
also in images of poor quality, e.g., if the object is defocused, deformed, or noisy, you can activate the
increased tolerance mode by specifying the second value negatively. Then, the matches on the lowest
pyramid level that still provides matches are returned.

3.3.4.9 Set the Parameters ’min_contrast’ and ’timeout’ via set_shape_model_param

Most of the parameters are set during the creation of the shape model. Two parameters can be set
also at a later time using the operator set_shape_model_param. In particular, you can set the pa-
rameters ’min_contrast’ and ’timeout’. ’min_contrast’ can be changed, e.g., if the contrast for
some search images is too low. ’timeout’ can be set only with set_shape_model_param but not
during the creation of the model. With it, you can specify a maximum period of time after which the
search is guaranteed to terminate, i.e., you can make the search interruptible. But note that for an in-
terrupted search no result is returned. Additionally, when setting the timeout mechanism, the runtime
of the search may be increased by up to 10%. The example hdevelop\Matching\Shape-Based\

set_shape_model_timeout.hdev shows how to use the timeout mechanism.

3.3.4.10 Optimize the Matching Speed

In the following, we show how to optimize the matching process in two steps. Please note that in order
to optimize the matching it is very important to have a set of representative test images from your

!application in which the object appears in all allowed variations regarding its position, orientation,
occlusion, and illumination.

Step 1: Assure that all objects are found

Before tuning the parameters for speed, we recommend to find settings such that the matching succeeds
in all test images, i.e., that all object instances are found. If this is not the case when using the default
values, check whether one of the following situations applies:

? Is the object clipped at the image border?
Set set_system(’border_shape_models’,’true’) (see section 3.3.4.3 on page 80).

? Is the search algorithm “too greedy”?
As described in section 3.3.4.4 on page 81, in some cases a perfectly visible object is not found if
the Greediness is too high. Select the value 0 to force a thorough search.

? Is the object partly occluded?
If the object should be recognized in this state nevertheless, reduce the parameter MinScore.

? Does the matching fail on the highest pyramid level?
As described in section 3.3.4.3 on page 80, in some cases the minimum score is not reached on
the highest pyramid level even though the score on the lowest level is much higher. Test this by
reducing NumLevels in the call to find_shape_model or one of its equivalents. Alternatively,
reduce MinScore.

S
ha

pe
-B

as
ed

B-88 The Individual Approaches

? Does the object have a low contrast?
If the object should be recognized in this state nevertheless, reduce the parameter MinContrast
(see section 3.3.3.5 on page 75).

? Is the polarity of the contrast inverted globally or locally?
If the object should be recognized in this state nevertheless, use the appropriate value for the pa-
rameter Metric when creating the model (see section 3.3.3.5 on page 75). If only a small part of
the object is affected, it may be better to reduce MinScore instead.

? Does the object overlap another instance of the object?
If the object should be recognized in this state nevertheless, increase the parameter MaxOverlap
(see section 3.3.4.5 on page 82).

? Are multiple matches found on the same object?
If the object is almost symmetric, restrict the allowed range of rotation as described in sec-
tion 3.3.3.3 on page 73 or decrease the parameter MaxOverlap (see section 3.3.4.5 on page 82).

Step 2: Tune the Parameters Regarding Speed

The speed of the matching process depends both on the model and on the search parameters. To make
matters more difficult, the search parameters depend on the chosen model parameters. We recommend
the following procedure:

• Increase MinScore as far as possible, i.e., as long as the matching succeeds.

• Now, increase Greediness until the matching fails. Try reducing MinScore. If this does not help
restore the previous values.

• If possible, use a larger value for NumLevels when creating the model.

• Restrict the allowed range of rotation and scale as far as possible as described in section 3.3.3.3 on
page 73 and section 3.3.3.4 on page 74. Alternatively, adjust the corresponding parameters when
calling find_shape_model, find_scaled_shape_model, or find_aniso_shape_model.

• Restrict the search to a region of interest as described in section 3.3.4.1 on page 78.

• Make sure that the model consists of many contour points and the contours have dominant struc-
tures that are discriminable clearly from other structures in the image. That is, already when taking
the images and preparing the model, you can significantly influence the speed of the search by
preferring larger models with dominant structures to smaller models with weak structures (see also
section 2.1.2.2 on page 22 and section 2.3.2 on page 30).

The following methods are more “risky”, i.e., the matching may fail if you choose unsuitable parameter
values.

• Increase MinContrast as long as the matching succeeds.

• If you are searching for a particularly large object, it typically helps to select a higher point reduc-
tion with the parameter Optimization (see section 3.3.3.2 on page 72).

• Increase AngleStep (and ScaleStep or the corresponding parameters for anisotropic scaling) as
long as the matching succeeds.

3.3 Shape-Based Matching B-89

• If the speed of the matching is more important than its robustness and accuracy, terminate the
search on a higher pyramid level as described in section 3.3.4.8 on page 86.

Note that for many of the above described optimizations you can also use the HDevelop Matching As-
sistant that guides you through the different steps of the complete matching process. How to use the
Matching Assistant is described in the HDevelop User’s Guide, section 7.3 on page 269.

3.3.5 Use the Specific Results of Shape-Based Matching

The results of shape-based matching can be used for all tasks introduced in section 2.4 on page 33 for
general matching. Furthermore, shape-based matching can return multiple instances of a model and
additionally can deal with multiple models simultaneously. How to use these specific results is described
in section 3.3.5.1 and section 3.3.5.2.

3.3.5.1 Deal with Multiple Matches

If multiple instances of the object are searched and found, the parameters Row, Column,
Angle, and Score contain tuples. The HDevelop program solution_guide\matching\

multiple_objects.hdev shows how to access these results in a loop.

Step 1: Determine the affine transformation

The transformation corresponding to the movement of the match is determined as described in sec-
tion 2.4.3.1 on page 39. In contrast to a search for single matches, here, the position of the match is
extracted from the tuple via the loop variable.

find_shape_model (SearchImage, ModelID, 0, rad(360), 0.6, 0, 0.55, \

'least_squares', 0, 0.8, RowCheck, ColumnCheck, \

AngleCheck, Score)

for j := 0 to |Score| - 1 by 1

vector_angle_to_rigid (0, 0, 0, RowCheck[j], ColumnCheck[j], \

AngleCheck[j], MovementOfObject)

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition, \

MovementOfObject)

Step 2: Use the transformation

In this example, the transformation is also used to display an arrow that visualizes the orientation (see
figure 3.15). For this, the position of the arrow head is transformed using affine_trans_pixel with
the same transformation matrix that was used for the XLD model. As remarked in section 2.4.3.2 on
page 42, you must use affine_trans_pixel and not affine_trans_point_2d.

!
affine_trans_pixel (MovementOfObject, -120, 0, RowArrowHead, \

ColumnArrowHead)

disp_arrow (WindowHandle, RowCheck[j], ColumnCheck[j], RowArrowHead, \

ColumnArrowHead, 2)

S
ha

pe
-B

as
ed

B-90 The Individual Approaches

Figure 3.15: Displaying multiple matches; the used model is depicted in figure 3.10a on page 80.

3.3.5.2 Deal with Multiple Models

When searching for multiple models simultaneously as described in section 3.3.4.6 on page 83, it is
useful to store the information about the models, i.e., the XLD models, in tuples. The following ex-
ample code stems from the already partly described HDevelop program solution_guide\matching\

multiple_models.hdev, which uses the operator find_scaled_shape_models to search simultane-
ously for the rings and nuts depicted in figure 3.13 on page 84.

Step 1: Access the XLD models

The XLD contours corresponding to the two models are accessed with the operator
get_shape_model_contours.

create_scaled_shape_model (ImageROIRing, 'auto', -rad(22.5), rad(45), \

'auto', 0.8, 1.2, 'auto', 'none', \

'use_polarity', 60, 10, ModelIDRing)

inspect_shape_model (ImageROIRing, PyramidImage, ModelRegionRing, 1, 30)

get_shape_model_contours (ShapeModelRing, ModelIDRing, 1)

create_scaled_shape_model (ImageROINut, 'auto', -rad(30), rad(60), 'auto', \

0.6, 1.4, 'auto', 'none', 'use_polarity', 60, \

10, ModelIDNut)

inspect_shape_model (ImageROINut, PyramidImage, ModelRegionNut, 1, 30)

get_shape_model_contours (ShapeModelNut, ModelIDNut, 1)

Step 2: Save the information about the models in tuples

To facilitate the access to the shape models later, the XLD contours are saved in tuples in analogy to
the model IDs (see section 3.3.4.6 on page 83). However, when concatenating XLD contours with the
operator concat_obj, one must keep in mind that XLD objects are already tuples as they may consist of
multiple contours! To access the contours belonging to a certain model, you therefore need the number
of contours of a model and the starting index in the concatenated tuple. The former is determined using

3.3 Shape-Based Matching B-91

the operator count_obj. The contours of the ring start with the index 1, the contours of the nut with the
index 1 plus the number of contours of the ring.

count_obj (ShapeModelRing, NumContoursRing)

count_obj (ShapeModelNut, NumContoursNut)

ModelIDs := [ModelIDRing,ModelIDNut]

concat_obj (ShapeModelRing, ShapeModelNut, ShapeModels)

StartContoursInTuple := [1,NumContoursRing + 1]

NumContoursInTuple := [NumContoursRing,NumContoursNut]

Step 3: Access the found instances

As described in section 3.3.5.1 on page 89, in case of multiple matches the output parameters Row etc.
contain tuples of values, which are typically accessed in a loop, using the loop variable as the index into
the tuples. When searching for multiple models, a second index is involved: The output parameter Model
indicates to which model a match belongs by storing the index of the corresponding model ID in the
tuple of IDs specified in the parameter ModelIDs. This may sound confusing, but can be realized in an
elegant way in the code: For each found instance, the model ID index is used to select the corresponding
information from the tuples created above.

As already noted, the XLD representing the model can consist of multiple contours. Therefore, you
cannot access them directly using the operator select_obj. Instead, the contours belonging to the
model are selected via the operator copy_obj, specifying the start index of the model in the concatenated
tuple and the number of contours as parameters. Note that copy_obj does not copy the contours, but
only the corresponding HALCON objects, which can be thought of as references to the contours.

find_scaled_shape_models (SearchImageReduced, ModelIDs, [-rad(22.5), \

-rad(30)], [rad(45),rad(60)], [0.8,0.6], [1.2, \

1.4], 0.7, 0, 0, 'least_squares', 0, 0.8, \

RowCheck, ColumnCheck, AngleCheck, ScaleCheck, \

Score, ModelIndex)

for i := 0 to |Score| - 1 by 1

Model := ModelIndex[i]

vector_angle_to_rigid (0, 0, 0, RowCheck[i], ColumnCheck[i], \

AngleCheck[i], MovementOfObject)

hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i], \

RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)

copy_obj (ShapeModels, ShapeModel, StartContoursInTuple[Model], \

NumContoursInTuple[Model])

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition, \

MoveAndScalingOfObject)

dev_display (ModelAtNewPosition)

endfor

3.3.6 Adapt to a Changed Camera Orientation

As shown in the sections above, HALCON’s shape-based matching allows to localize objects even if their
position and orientation in the image or their scale changes. However, the shape-based matching fails

S
ha

pe
-B

as
ed

B-92 The Individual Approaches

if the camera observes the scene under an oblique angle, i.e., if it is not pointed perpendicularly at the
plane in which the objects move, because an object then appears distorted due to perspective projection.
Even worse, the distortion changes with the position and orientation of the object.

In such a case you can on the one hand rectify images before applying the matching. This is a
three-step process: First, you must calibrate the camera, i.e., determine its position and orientation
and other parameters, using the operator calibrate_cameras (see Solution Guide III-C, section 3.2
on page 68). Secondly, the calibration data is used to create a mapping function via the operator
gen_image_to_world_plane_map, which is then applied to images with the operator map_image (see
Solution Guide III-C, section 3.4 on page 91).

On the other hand, you can also use the uncalibrated perspective deformable matching. It works similar
to the shape-based matching but already considers perspective deformations of the model and returns a
projective transformation matrix (2D homography) instead of a 2D pose consisting of a position and an
orientation. Additionally, a calibrated perspective deformable matching is provided for which a camera
calibration has to be applied and which results in the 3D pose of the object. For further information
on perspective deformable matching please refer to section 3.6 on page 124 or to the Solution Guide I,
chapter 9 on page 113 for the uncalibrated case and Solution Guide III-C, section 4.6 on page 136 for
the calibrated case.

Note that if the same perspective view is used for all images, rectifying the images before applying the
matching is faster and more accurate than using the perspective deformable matching. But if different
perspective views are needed, you must use the perspective matching.

3.4 Component-Based Matching

The component-based matching is an extension of the shape-based matching. Like shape-based match-
ing, the component-based matching extracts contours and matches their shapes against the shapes of
previously created models. But in contrast to shape-based matching, a component model consists of sev-
eral components that can change their relations, i.e., they can move and rotate relative to each other. The
possible relations have to be determined or specified when creating the model. Then, the actual match-
ing returns the individual relations for the found model instances. Note that in contrast to shape-based
matching, for component-based matching no scaling in size is possible.

The task of locating components that can move relative to each other is a little bit more complex than
the process needed for a shape-based matching. For example, instead of a single ROI several ROIs
(containing the initial components) have to be selected or extracted. Additionally, the relations, i.e., the
possible movements between the model components have to be determined. For an overview, figure 3.16
illustrates the main steps needed for a component-based matching.

For detailed information, the following sections show

• a first example for a component-based matching (section 3.4.1),

• how to extract the initial components of a component model (section 3.4.2 on page 96),

• how to create a suitable component model (section 3.4.3 on page 97),

• how to apply the search (section 3.4.4 on page 106), and

3.4 Component-Based Matching B-93

If movable object parts are
known, select ROIs manually

To automatically segment

gen_initial_components

potentially movable parts use

To obtain the relations from

create_trained_component_model

training images use

train_model_components and

or

or

Create Model

create_component_model

To obtain the relations from known
position and angle variations use

Search Model Clear Model

Extract Initial Components

find_component_model clear_component_model

Figure 3.16: Main steps of component-based matching.

• how to deal with the results that are specific for component-based matching (section 3.4.5 on page
110).

3.4.1 A First Example

In this section we give a quick overview of the matching process with component-based matching.
To follow the example actively, start the HDevelop program hdevelop\Applications\Position-

Recognition-2D\cbm_bin_switch.hdev, which locates instances of a switch that consists of two
components and determines if the setting of each found switch is ’on’ or ’off’.

Step 1: Extract the initial components

First, the reference image is read. It shows a switch with the setting ’on’ (see figure 3.17, left). As it
consists of two parts that can move relative to each other, two ROIs are created. Concatenated into a
tuple (InitialComponents), the regions build the initial components.

read_image (ModelImage, 'bin_switch/bin_switch_model')
gen_rectangle1 (Region1, 78, 196, 190, 359)

gen_rectangle1 (Sub1, 150, 196, 190, 321)

difference (Region1, Sub1, InitialComponents)

gen_rectangle1 (Region2, 197, 204, 305, 339)

gen_rectangle1 (Sub2, 205, 232, 285, 314)

difference (Region2, Sub2, InitialComponent)

concat_obj (InitialComponents, InitialComponent, InitialComponents)

dev_display (ModelImage)

dev_display (InitialComponents)

Step 2: Train the possible relations between the components

Then, the relations between the components have to be determined. Here, they are obtained by a train-
ing. Another method that is very common in practice is to manually define the possible relations (see

C
om

po
ne

nt
-B

as
ed

B-94 The Individual Approaches

Figure 3.17: (left) reference image with the two initial components (switch is ’on’); (right) training image
(switch is ’off’).

section 3.4.3 on page 97). For the training, a training image is read (see figure 3.17, right). As only
two different relations of the initial components are valid (one for the setting ’on’ and one for the setting
’off’), a single training image showing the setting ’off’ together with the reference image showing the
setting ’on’ are sufficient for the training. If more than two relations were valid, more training images
would be needed. Using the reference image, the initial components, the training image, and several
parameters that control the training, the training is applied with train_model_components.

read_image (TrainingImage, 'bin_switch/bin_switch_training_1')
train_model_components (ModelImage, InitialComponents, TrainingImage, \

ModelComponents, 30, 30, 20, 0.7, -1, -1, rad(25), \

'speed', 'rigidity', 0.2, 0.5, ComponentTrainingID)

Step 3: Create the component model

If the result of the training is satisfying, the component model can be created. To make the
model less strict, before the creation small tolerances are added to the obtained relations using mod-

ify_component_model.

modify_component_relations (ComponentTrainingID, 'all', 'all', 1, rad(1))

create_trained_component_model (ComponentTrainingID, 0, rad(360), 10, 0.7, \

'auto', 'auto', 'none', 'use_polarity', \

'false', ComponentModelID, RootRanking)

When the component model is created from the training components, the training components are not
needed anymore and can be destroyed with clear_training_components.

clear_training_components (ComponentTrainingID)

Step 4: Find the component model and derive the corresponding relations

Now, the search images are read and instances of the component model are searched with
find_component_model. For each match, the individual components and their relations are queried

3.4 Component-Based Matching B-95

using get_found_component_model. Dependent on the angle between the components, the procedure
visualize_bin_switch_match visualizes the setting of the found switch.

read_image (SearchImage, 'bin_switch/bin_switch_' + ImgNo)

find_component_model (SearchImage, ComponentModelID, 1, 0, rad(360), 0, \

0, 1, 'stop_search', 'prune_branch', 'none', 0.6, \

'least_squares', 0, 0.85, ModelStart, ModelEnd, \

Score, RowComp, ColumnComp, AngleComp, ScoreComp, \

ModelComp)

dev_display (SearchImage)

for Match := 0 to |ModelStart| - 1 by 1

get_found_component_model (FoundComponents, ComponentModelID, \

ModelStart, ModelEnd, RowComp, \

ColumnComp, AngleComp, ScoreComp, \

ModelComp, Match, 'false', RowCompInst, \

ColumnCompInst, AngleCompInst, \

ScoreCompInst)

dev_display (FoundComponents)

visualize_bin_switch_match (AngleCompInst, Match, WindowHandle)

endfor

Figure 3.18: Instances of the component model in a search image and their determined switch settings.

Step 5: Destroy the component model

When the component model is not needed anymore, it is destroyed using clear_component_model.

clear_component_model (ComponentModelID)

The following sections go deeper into the details of the individual steps of a component-based matching
and the parameters that have to be adjusted.

C
om

po
ne

nt
-B

as
ed

B-96 The Individual Approaches

3.4.2 Extract the Initial Components

In contrast to shape-based matching, a model is not generated from a single ROI but from several con-
catenated regions that contain the initial components of the model, i.e., the parts of the model that can
move and rotate relative to each other. The initial components can be extracted by different means:

• If the components are approximately known, the corresponding ROIs can be selected manually
and are concatenated into a tuple (section 3.4.2.1).

• If the initial components are not known, potential candidates can be derived using the operator
gen_initial_components (section 3.4.2.2).

3.4.2.1 Manual Selection of Initial Components

If the initial components are approximately known, for each component, i.e., for each moveable part
of the object of interest, an ROI is selected manually (see section 2.1.1 on page 20 for the selection
of ROIs). Then, the ROIs of all initial components are concatenated into a tuple. An example for the
manual selection of the initial components was already shown in the example in section 3.4.1 on page
93. There, the initial components were built by the ROIs that were selected for the two parts of a switch
that are allowed to change their relation.

3.4.2.2 Automatic Extraction of Initial Components

If the initial components are not known, i.e., if it is not yet clear which parts of an object may move rel-
ative to each other, the potential ROIs have to be derived automatically. This is shown, e.g., in the HDe-
velop example program hdevelop\Matching\Component-Based\cbm_label_simple.hdev. There,
a ’best before’ label has to be located and the relations of its components have to be determined. The
individual components are not yet known, so in a first step only an ROI containing the complete label is
selected (see figure 3.19, left) and the domain of the image is reduced to this region to obtain a template
image. From this template image, the initial components are derived using gen_initial_components

(see figure 3.19, right).

read_image (Image, 'label/label_model')
gen_rectangle1 (ModelRegion, 119, 106, 330, 537)

reduce_domain (Image, ModelRegion, ModelImage)

gen_initial_components (ModelImage, InitialComponents, 40, 40, 20, \

'connection', [], [])

dev_display (Image)

dev_display (InitialComponents)

Besides the template image the operator expects values for several parameters that control the segmenta-
tion of the components, in particular parameters describing the minimum and maximum contrast needed
to extract contours from the image and the minimum size a connected contour must have to be returned.
These parameters are similar to the parameters that are used for shape-based matching (see section 3.3.3
on page 69). Additionally, some generic parameters that control the internal image processing can be

3.4 Component-Based Matching B-97

Figure 3.19: (left) ROI that is used to create a template image; (right) automatically derived initial compo-
nents.

adjusted. The influence of different values for the control parameters is exemplarily shown in the HDe-
velop example program hdevelop\Matching\Component-Based\cbm_param_visual.hdev. In fig-
ure 3.20, e.g., a result of gen_initial_components with a too low contrast is shown. Note that for
component-based matching it is even more important than for the other matching approaches that only
those structures are contained in the model that belong to the object. Otherwise, the contours derived by
the noise become initial components as well.

Figure 3.20: Segmentation of initial components with a too low contrast.

3.4.3 Create a Suitable Component Model

When the initial components are selected or extracted from the reference image, in a second step, the
component model can be created. For the creation of the model the relations between the components
have to be known. Thus, the creation can be realized by different means:

• If the possible relations between the components are already known, the component model can
be directly created using create_component_model (section 3.4.3.1). The relations between the
model components are discussed in more detail in section 3.4.3.2 on page 100.

C
om

po
ne

nt
-B

as
ed

B-98 The Individual Approaches

• If the possible relations are not known, they have to be derived from a set of training images that
show all possible variations of relations (section 3.4.3.3 on page 101).

If the model is created using a training, between the training and the final creation of the model it may
be suitable to

• visualize different training results (section 3.4.3.4 on page 102) or

• modify the training results (section 3.4.3.5 on page 105).

After creating the model, you may want to

• store the created model to file so that you can reuse it in another application (section 3.4.3.6 on
page 105), or

• query information from the already existing model (section 3.4.3.7 on page 106).

3.4.3.1 Create Model from Known Relations

If the relations, i.e., the possible movements between the model components are known, you can create
the component model directly using create_component_model, which creates a component model
for a matching based on explicitly specified components and relations. An example is hdevelop\

Matching\Component-Based\cbm_modules_simple.hdev. There, the relations between the indi-
vidual modules of a compound object that are shown in figure 3.21 are known by the user.

After the ROIs of the components were selected and concatenated the operator cre-

ate_component_model is applied.

read_image (ModelImage, 'modules/modules_model')
gen_rectangle2 (ComponentRegions, 318, 109, -1.62, 34, 19)

gen_rectangle2 (Rectangle2, 342, 238, -1.63, 32, 17)

gen_rectangle2 (Rectangle3, 355, 505, 1.41, 25, 17)

gen_rectangle2 (Rectangle4, 247, 448, 0, 14, 8)

gen_rectangle2 (Rectangle5, 237, 537, -1.57, 13, 10)

concat_obj (ComponentRegions, Rectangle2, ComponentRegions)

concat_obj (ComponentRegions, Rectangle3, ComponentRegions)

concat_obj (ComponentRegions, Rectangle4, ComponentRegions)

concat_obj (ComponentRegions, Rectangle5, ComponentRegions)

create_component_model (ModelImage, ComponentRegions, 20, 20, rad(25), 0, \

rad(360), 15, 40, 15, 10, 0.8, [4,3,3,3,3], 0, \

'none', 'use_polarity', 'true', ComponentModelID, \

RootRanking)

Note that instead of the explicit relations the variations of the positions and the angles of the model
components are passed to the operator. These describe the movements of the components independently
from each other but relative to their positions in the reference image. That is, if a search image would
be transformed so that the complete compound object is positioned and oriented approximately as in the

3.4 Component-Based Matching B-99

Figure 3.21: Initial components of a compound object with known relations.

reference image, the individual components may differ from their corresponding model components for
VariationRow/2 pixels in row direction, VariationColumn/2 pixels in column direction, and Varia-

tionAngle/2 in their orientation. If single values are passed to the variation parameters, they are valid
for all components. If tuples of values are passed, they must contain a value for each component. In
figure 3.22 the variations for the components of figure 3.21 are illustrated. In particular, the gray arrows
show the range of movement allowed for the point of reference of the individual components and the gray
rectangles show the allowed rotation. The operator create_component_model automatically derives
the relations between the components from the variations and uses them to create the component model.

Figure 3.22: Variations (gray) of the model components (black) that are used to automatically derive the
relations between the model components (VariationRow=20, VariationAngle=rad(25)).

C
om

po
ne

nt
-B

as
ed

B-100 The Individual Approaches

3.4.3.2 Search Tree and Relations Between Model Components

Whereas the manually selected variations show the allowed movements and rotations of the individual
components relative to their position in the template image, the relations show the allowed movements
and rotations of the components relative to a reference component.

The relations can be queried together with the search tree using get_component_model_tree. The
search tree specifes in which sequence the components are searched and how they are searched relative
to each other. It depends on the selected root component, i.e., the component that is searched first (how to
select the root component is described in section 3.4.4.2 on page 107). The reference component used to
calculate the relations of an individual component is the component’s predecessor in the search tree. For
example, in the search tree that is shown in figure 3.23 for the compound model of the example program,
the leftmost component is the root component and the components are searched in the direction indicated
by the dim gray lines.

Figure 3.23: Relations (light gray) and search tree (dim gray) for the model components (black) relative to
the automatically derived root component.

If a component model is obtained by a training with multiple training images (see section 3.4.3.3), you
can also use get_component_relations to query the relations between the components that are deter-
mined by the training. Then, no search tree is used as basis for the calculations. Instead, the reference
component used to calculate the relations of the components is always the selected root component. Thus,
the relations returned by both operators differ significantly. Note that get_component_relations is
mainly used to evaluate the success of a training before creating the corresponding component model,
whereas get_component_model_tree is applied after the creation of the model to visualize the search
space used for the actual matching (see also section 3.4.3.4 on page 102 and figure 3.27 on page 104).

In both cases, the relations are returned as regions and as numerical values. In particular, the following
information is obtained:

• The positions of the points of reference for all components are represented as small circles. The
corresponding numerical values are the coordinates of the positions that are returned in the param-
eters Row and Column.

3.4 Component-Based Matching B-101

• The orientation relations for all components except the root component, i.e., the variations of the
orientations relative to the respective reference components are represented by circle sectors with
a fixed radius that originate at the mean relative poisitions of the components. The corresponding
numerical values are the angles that are returned in the parameter Phi.

• The position relations for all components except the root component, i.e., the movements of the
reference points of the specific components relative to the reference point of their reference com-
ponent are represented as rectangles. The corresponding numerical values are the parameters of
the rectangle Length1, Length2, AngleStart, and AngleExtent.

If the model is created by manually selected variations, the derived relations show certain regularities. In
particular, each rectangle is approximately orthogonal to the view from the predecessor to the searched
component and the width of the rectangle orthogonally to this view depends on the angle variation and
the distance between the two components. That is, with an increasing distance between the components
the width of the rectangle increases, too (see figure 3.23 on page 100). For models that are obtained by
a training as described in the following section, the behavior is different, because the relations are then
obtained by arbitrary relations of the components in the training images instead of regular variations.
Thus, also arbitrary orientations and sizes of the rectangles are possible (see figure 3.27 on page 104).

3.4.3.3 Create Model from Training Images

If the relations are not explicitly known, you have to determine them using training images that show the
needed variety of relations.

For example, in the HDevelop example program hdevelop\Matching\Component-Based\

cbm_label_simple.hdev several training images are read and concatenated into a tuple
(TrainingImages). These training images show the already introduced ’best before’ label with dif-
ferent relations between its individual parts (see also section 3.4.2.2 on page 96).

gen_empty_obj (TrainingImages)

for Index := 1 to 5 by 1

read_image (TrainingImage, 'label/label_training_' + Index)

concat_obj (TrainingImages, TrainingImage, TrainingImages)

endfor

For the training of the components and relations the operator train_model_components is applied.
The training is controlled by a set of different parameters, which are described in detail in the Reference
Manual. During the training, from the initial components the model components are derived by a cluster-
ing. For example, if you compare the initial components in figure 3.19 on page 97 (right) with the model
components in figure 3.24 (right), you see that those initial components that have the same relations in
all training images are merged.

train_model_components (ModelImage, InitialComponents, TrainingImages, \

ModelComponents, 40, 40, 20, 0.85, -1, -1, rad(15), \

'reliability', 'rigidity', 0.2, 0.5, \

ComponentTrainingID)

dev_display (Image)

dev_display (ModelComponents)

C
om

po
ne

nt
-B

as
ed

B-102 The Individual Approaches

Figure 3.24: (left) one of several training images; (right) the model components for the component model.

After the training, the component model that is based on the trained components is created with cre-

ate_trained_component_model. Before the creation, modify_component_relations is applied to
add small tolerance values to the relations and thus make the model less strict. After the creation, the
training components are not needed anymore and therefore are destroyed.

modify_component_relations (ComponentTrainingID, 'all', 'all', 15, rad(5))

create_trained_component_model (ComponentTrainingID, -rad(30), rad(60), 10, \

0.8, 'auto', 'auto', 'none', \

'use_polarity', 'false', ComponentModelID, \

RootRanking)

clear_training_components (ComponentTrainingID)

Note that gen_initial_components, which was introduced in section 3.4.2.2 on page 96 for the au-
tomatic derivation of the initial components for a model, can be used also to test different values for the
control parameters ContrastLow, ContrastHigh, and MinSize that have to be adjusted for the training
of the model components. Thus, for the training of a component model the operator can be used similar
as inspect_shape_model is used for shape-based matching (see section 3.3.3 on page 69).

3.4.3.4 Visualize the Training Results

The training with train_model_components returns the final model components and trains the rela-
tions between them. Different results of the training can be visualized. In particular, you can visualize

• the initial components or the final model components in a specific image,

• the relations between the components, and

• the search tree.

To visualize all final model components, all initial components, or a specific initial component for a
specific image, you apply the operator get_training_components. There, you specify amongst oth-
ers if the model components, the initial components, or a specific initial component should be queried

3.4 Component-Based Matching B-103

and in which image the components should be searched. Besides the numerical results (Row, Column,
Angle, and Score), the contours of the initial components or model components are returned and can
be visualized.

get_training_components (ModelComponents, ComponentTrainingID, \

'model_components', 'model_image', 'false', \

Row, Column, Angle, Score)

dev_display (Image)

dev_display (ModelComponents)

The HDevelop example program hdevelop\Matching\Component-Based\

cbm_param_visual.hdev shows the use of different visualization and analysis tools provided
for the component-based matching. For example, in figure 3.25 a specific initial component (the first
’B’ of the ’best before’ label) is obtained from the template image, whereas in figure 3.26 it is obtained
from a training image. The result differs, because within the training image the ambiguities are not yet
solved.

Figure 3.25: (left) Template image; (right) component ’2’ in the template image.

Figure 3.26: (left) Training image; (right) component ’2’ in the training image.

To check the quality of a training, you can use get_component_relations to query the relations of
the components that are returned by the training. How to interprete the returned regions and numerical
values is shown in section 3.4.3.2 on page 100.

C
om

po
ne

nt
-B

as
ed

B-104 The Individual Approaches

count_obj (ModelComponents, NumComp)

for i := 0 to NumComp - 1 by 1

get_component_relations (Relations, ComponentTrainingID, i, \

'model_image', Row, Column, Phi, Length1, \

Length2, AngleStart, AngleExtent)

dev_display (Relations)

endfor

If the result of the training is not satisfying you can repeat the training with different conditions (different
parameters, different training images etc.). If the training is satisfying, you can create the component
model. After creating the component model, you can visualize the search tree and the corresponding re-
lations using get_component_model_tree. That is, you can visualize the search space that is actually
used for the later search (assuming that you select the same root component for the visualization of the
search tree and for the search).

create_trained_component_model (ComponentTrainingID, -rad(30), rad(60), 10, \

0.8, 'auto', 'auto', 'none', \

'use_polarity', 'false', ComponentModelID, \

RootRanking)

for i := 0 to |RootRanking| - 1 by 1

get_component_model_tree (Tree, Relations, ComponentModelID, \

RootRanking[i], 'model_image', StartNode, \

EndNode, Row, Column, Phi, Length1, Length2, \

AngleStart, AngleExtent)

dev_display (Tree)

dev_display (Relations)

endfor

The difference between the relations obtained for the training result with get_component_relations

and those obtained for the created model with get_component_model_tree is illustrated in figure 3.27.
In particular, get_component_relations calculates the relations of all components relative to the root
component, whereas get_component_model_tree calculates the relations of the individual compo-
nents relative to their predecessor in the search tree.

Figure 3.27: (left) Result of get_component_relations: relations of the model components relative to
component 1 (“BEST BEFORE END”); (right) result of get_component_model_tree: rela-
tions within the search tree using component 1 as root component.

3.4 Component-Based Matching B-105

3.4.3.5 Modify the Training Results

Sometimes, the training returns results that are not exactly the desired ones and thus have to be modified.
Besides a new training with different parameters or more suitable training images, there are two cases in
which a further modification is possible after the training. In particular, you can modify

• the clustering that was used to derive the model components from the initial components and

• the relations between the model components.

During the training the rigid model components were derived from the initial components by a clus-
tering that is controlled by the parameters AmbiguityCriterion, MaxContourOverlap, and Clus-

terThreshold. After a first training you can apply inspect_clustered_components to test dif-
ferent values for these parameters. If a suitable set of values is found that does not correspond to the
values used for the first training, the new set of values can be added to the training result with clus-

ter_model_components as is shown, e.g., in the HDevelop example program hdevelop\Matching\

Component-Based\cbm_param_visual.hdev.

Besides the modification of the model components, it is sometimes suitable to change the relations be-
tween the model components. This modification can be applied with modify_component_relations

and is often used to add small tolerance values to the relations (see figure 3.28) to make the matching
less strict. Examples were already shown in section 3.4.1 on page 93 and section 3.4.3.3 on page 101.

Figure 3.28: (black) Component relations obtained by the training; (gray) component relations after modi-
fication.

3.4.3.6 Reuse the Model

Often, it is useful to split the creation of the model (offline part) from the search of the model (on-
line part). Then, a created component model can be stored to file using write_component_model.
With read_component_model it can be read from the file again for the online process. Fur-
thermore, write_training_components can be used to store training results to file and
read_training_components can be used to read them from file again.

C
om

po
ne

nt
-B

as
ed

B-106 The Individual Approaches

3.4.3.7 Query Information from the Model

At different steps of a matching application it may be necessary or suitable to query information from a
model.

After the training, the different training results can be queried as introduced in section 3.4.3.4 on page
102. In particular, you can query the initial components or the model components in a specific image
with get_training_components and the relations between the model components that are contained
in a training result with get_component_relations.

Additionally, the rigid model components obtained by the training can be inspected with in-

spect_clustered_components as introduced in section 3.4.3.5 on page 105.

After the creation of a model, respecitvely when reading an already existing component model
from file, you can query the search tree and the associated relations of the component model
with get_component_model_tree. Additionally, you can query the parameters of the model with
get_component_model_params. The returned parameters describe the minimum score the returned
instances must have (MinScoreComp), a ranking of the model components concerning their suitability to
be a root component (RootRanking), and the handles of the shape models of the individual components
(ShapeModelIDs). The RootRanking is useful to select a suitable root component for the later search
(see section 3.4.4.2). The handles of the individual shape models can be used, e.g., to query the param-
eters for the shape models of each component using get_shape_model_params (see section 3.3.3 on
page 69).

3.4.4 Search for Model Instances

The actual matching is performed by the operator find_component_model. In the following, we show
how to select suitable parameters for this operator to adapt and optimize a matching task. In particular,
we show how to

• restrict the search space to a region of interest (section 3.4.4.1),

• specify the root component via the parameter RootComponent (section 3.4.4.2),

• restrict the range of orientation for the search of the root component via the parameters An-

gleStartRoot and AngleExtentRoot (section 3.4.4.3),

• specify the visibility of the object via the parameter MinScore (section 3.4.4.4 on page 108),

• search for multiple instances of the model by adjusting the parameters NumMatches and Max-

Overlap (section 3.4.4.5 on page 108),

• adjust the behavior of the search for the case that components are not found via the parameters
IfRootNotFound, IfComponentNotFound, and PosePrediction (section 3.4.4.6 on page 108),
and

• adjust the internally applied shape-based matching, which is used to search for the individual
components, via the parameters MinScoreComp, SubPixelComp, NumLevelsComp, and Greedi-

nessComp (section 3.4.4.7 on page 109).

3.4 Component-Based Matching B-107

At the end of the matching, the model and further buffered data have to be cleared from memory with
clear_component_model. If you want to reuse a model, you have to store it into a file before clearing
it from memory. Then, you can read it from file again as described in more detail in section 2.2 on page
28.

3.4.4.1 Restrict the Search to a Region of Interest

Similar to correlation-based matching or shape-based matching, you can restrict the search space for
the root component and thus speed up the matching by applying the operator find_component_model
not to the whole image but only to an ROI. The corresponding procedure is explained in more detail
for a shape-based matching in section 3.3.4.1 on page 78. For component-based matching you simply
have to replace find_shape_model by find_component_model. Note that although component-based
matching is based on shape-based matching, you must not modify the point of reference of the model’s
components using set_shape_model_origin.

3.4.4.2 Specify the Root Component (RootComponent)

The components of a component model are organized in a search tree that specifies the sequence in
which the individual components of a model are searched (see also section 3.4.3.1 on page 98). That is,
first the root component, which is specified in the parameter RootComponent, is searched in all allowed
positions and orientations. Then, the other components are searched in the sequence that is given by the
search tree. In doing so, each component is searched relative to the component with the previous position
in the search tree. Thus, the complete search space is needed only for the root component, whereas the
other components are searched recursively.

As root component a component should be choosen that most probably can be found in the search image.
An alternative criterion is the runtime of the search that is expected for each potential root component. To
get the root component with the best expected runtime, you simply pass the root ranking RootRanking

that was returned during the creation of the model to the parameter RootComponent.

find_component_model (SearchImage, ComponentModelID, RootRanking, \

-rad(30), rad(60), 0.5, 0, 0.5, 'stop_search', \

'prune_branch', 'none', 0.6, 'least_squares', 4, \

0.9, ModelStart, ModelEnd, Score, RowComp, \

ColumnComp, AngleComp, ScoreComp, ModelComp)

3.4.4.3 Restrict the Range of Orientation for the Root Component (AngleStartRoot, An-
gleExtentRoot)

The root component is searched in the allowed range of orientation that is specified by AngleStartRoot
and AngleExtentRoot. We recommend to limit the allowed range of rotation as much as possible in
order to speed up the search process. If necessary, the range of orientation is clipped to the range that
was specified when creating the model.

C
om

po
ne

nt
-B

as
ed

B-108 The Individual Approaches

3.4.4.4 Specify the Visibility of the Object (MinScore)

With the parameter MinScore you can specify how much of the component model must be visible to
be returned as a match. This is similar to the corresponding parameter of shape-based matching (see
section 3.3.4.3 on page 80). As the visibility of the component model depends on the visibility of the
contained components (see section 3.4.4.7 on page 109), please refer to section 3.4.4.6 for the case that
individual components are not found.

3.4.4.5 Search for Multiple Instances of the Object (NumMatches, MaxOverlap)

With the parameter NumMatches you can specify the maximum number of instances of a component
model that should be returned. With the parameter MaxOverlap you can specify to which degree in-
stances may overlap. This parameter is suitable, e.g., to reject instances of the component model that
differ only in the poses of one or a few components from an instance that was found with a higher
score. Both parameters are similar to the corresponding parameters of shape-based matching (see sec-
tion 3.3.4.5 on page 82).

3.4.4.6 Adjust the Behavior for the Case that Components are not found
(IfRootNotFound, IfComponentNotFound, PosePrediction)

Sometimes a component is not found, e.g., because of occlusions. For example, in the HDevelop ex-
ample program hdevelop\Applications\Position-Recognition-2D\cbm_dip_switch.hdev in
one of the search images two instances of the model of a dip switch are found, but for one instance
some components are occluded (see figure 3.29). That is, when calling find_component_model, the
number of elements returned in the parameters RowComp, ColumnComp, AngleComp, ScoreComp, and
ModelComp does not correspond to the number of expected components (taking the number of found in-
stances into account). How to examine which specific components of which found instance are missing
is described in section 3.4.5 on page 110.

Here, we show how to adjust the behavior of the search for the case that components are not found. In
particular, you can

• adjust the behavior of the search for the case that the root component is not found,

• adjust the behavior of the search for the case that any other component is not found, and

• adjust if the position and orientation of a not found component should be ignored or if it should be
estimated based on the positions and orientations of the found components.

For the case that a root component is not found in a search image, the parameter IfRootNotFound must
be adjusted. If the parameter is set to ’stop_search’ the search is aborted, i.e., for this instance of the
model no other components are searched for. If it is set to ’select_new_root’ the other components
are tested in the sequence that is given by RootRanking. Note that the latter proceeding is significantly
slower than aborting the search.

For the case that at least one of the other components is not found, the parameter IfComponentNotFound
must be adjusted. It controls how to handle a component that is searched relative to a component that has

3.4 Component-Based Matching B-109

Figure 3.29: For one of two found instances of a component model some components are occluded.

not been found. If IfComponentNotFound is set to ’prune_branch’ the component is not searched
and therefore also not found. If it is set to ’search_from_upper’ the component is searched relative to
another component. In particular, instead of the component with the previous position in the search tree,
the component that is previous to the not found component is used as reference for the relative search.
If IfComponentNotFound is set to ’search_from_best’ the component is searched relative to the
component for which the runtime for the relative search is expected to be minimal.

For the case that not all components are found, you can further select if the 2D poses, i.e., the positions
and orientations, are returned only for the found components (PosePrediction set to ’none’) or if
the positions and orientations of the not found components should be returned as an estimation that is
based on the neighboring components (PosePrediction set to ’from_neighbors’) or on all found
components (PosePrediction set to ’from_all’). Note that if an estimated position and orientation
is returned, the corresponding return value of ScoreComp is 0.0.

3.4.4.7 Adjust the Shape-Based Matching that is Used to Find the Components
(MinScoreComp, SubPixelComp,NumLevelsComp, GreedinessComp)

The internal search for the individual components is based on shape-based matching. Therefore, the
parameters MinScoreComp, SubPixelComp, NumLevelsComp, and GreedinessComp correspond to the
parameters MinScore, SubPixel, NumLevels, and Greediness that are used for shape-based matching
(see section 3.3.4 on page 77). Each of the parameters must contain either a single value that is used for
all components or the number of values must correspond to the number of components. The number of
values for NumLevelsComp can also be two or twice the number of components. For further information,
please refer to the Reference Manual entry of find_component_model.

C
om

po
ne

nt
-B

as
ed

B-110 The Individual Approaches

3.4.5 Use the Specific Results of Component-Based Matching

Each instance of a component model consists of several components that can change their spatial re-
lations. Therefore, the result of the component-based matching is a bit more complex than that of a
shape-based matching. In particular, the positions and orientations that are returned do not consist of a
single value for each found instance of the model, but consist of values for all returned components. Pa-
rameters that return values for all components are RowComp, ColumnComp, AngleComp, and ScoreComp.
The latter returns the scores of the individual components. From these, the score for each found instance
of the component model (Score) is derived.

To know to which component of which found model instance a specific index position of the tuples
RowComp, ColumnComp, AngleComp, and ScoreComp refers, the parameters ModelStart, ModelEnd,
and ModelComp are provided. ModelStart and ModelEnd are needed to know how many instances are
returned and to which instance the returned components belong. ModelComp is needed to know which
specific components are returned and therefore also which specific components are not found.

In particular, the number of returned instances of the component model can be derived from the length of
the tuples ModelStart and ModelEnd. In the HDevelop example program hdevelop\Applications\

Position-Recognition-2D\cbm_dip_switch.hdev, e.g., for the search image shown in figure 3.29
on page 109, two model instances have been found, i.e., the tuples ModelStart and ModelEnd both
consist of two values.

The actual values of the tuples indicate the intervals of the index positions of the tuples RowComp, Colum-
nComp, AngleComp, and ScoreComp that refer to the same instance of the component model. In the
example program, ModelStart is [0,13] and ModelEnd is [12,21]. That is, the values with the index
positions 0 to 12 refer to the first instance of the component model and the values with the index positions
13 to 21 refer to the second model instance. As the component model consists of 13 initial components,
we see that for the first model instance all components have been found, whereas for the second model
instance only 9 of 13 components have been found

Now we know the number of returned instances and for each instance we know the number of returned
components and their positions, orientations, and scores. But we do not yet know, which of the 13
initial components of the model are missing for the second model instance. For this knowledge, we need
the parameter ModelComp that indicates which specific components are found (see figure 3.30). In the
example, ModelComp is [0,1,2,3,4,5,6,7,8,9,10,11,12,0,1,2,7,8,9,10,11,12]. That is, for the first model
instance the components 0 to 12, i.e., all components of the component model have been found. For the
second model instance, the components 0 to 2 and the components 7 to 12 have been found. Thus, the
components 3 to 6 are missing.

ModelStart = [ModelEnd = [

0,1,2,7,8,9,10,11,12]0,1,2,3,4,5,6,7,8,9,10,11,12,[

0,]13 12, 21]

ModelComp =

Instance 0 Instance 1

Figure 3.30: Meaning of ModelStart, ModelEnd, and ModelComp.

3.5 Local Deformable Matching B-111

After the matching the components of each found model instance can be queried with
get_found_component_model, so that the result can be visualized as is shown, e.g., for the dip
switches in figure 3.29 on page 109 and figure 3.31. Besides the visualization of the found components
by overlaying their regions on the search image, it is sometimes suitable to apply additional application-
specific visualization steps. Here, e.g., a procedure for the textual interpretation of the result is applied
(visualize_bin_switch_match).

NumFound := |ModelStart|

for Match := 0 to |ModelStart| - 1 by 1

get_found_component_model (FoundComponents, ComponentModelID, \

ModelStart, ModelEnd, RowComp, \

ColumnComp, AngleComp, ScoreComp, \

ModelComp, Match, 'false', RowCompInst, \

ColumnCompInst, AngleCompInst, \

ScoreCompInst)

dev_display (FoundComponents)

visualize_dip_switch_match (RowCompInst, ColumnCompInst, \

AngleCompInst, RowRef, ColumnRef, \

AngleRef, WindowHandle, Match)

endfor

clear_component_model (ComponentModelID)

Figure 3.31: Result of component-based matching: two instances of a component model showing a dip
switch are found, although some components are occluded.

3.5 Local Deformable Matching

Like shape-based matching, local deformable matching extracts contours and matches their shapes
against the shapes of previously created models. But in contrast to shape-based matching, slightly de-

Lo
ca

lD
ef

or
m

ab
le

B-112 The Individual Approaches

Figure 3.32: (left) “MVTec” logo used for the model creation; (right) deformed logo instance overlaid by
the model contours.

formed contours are not only found but the deformations are returned as result. Note that the actual
location of the object is restricted to determining its position, whereas the orientation and scale are inter-
preted as part of the deformation.

The following sections show

• a first example for a local deformable matching (section 3.5.1),

• how to select an appropriate ROI to derive the template image from the reference image (sec-
tion 3.5.2 on page 116),

• how to create a suitable model (section 3.5.3 on page 116),

• how to optimize the search (section 3.5.4 on page 119), and

• how to deal with the results that are specific for the local deformable matching (section 3.5.5 on
page 122).

3.5.1 A First Example

In this section we give a quick overview of the matching process with local deformable matching. To
follow the example actively, start the HDevelop example program hdevelop\Matching\Deformable\

find_local_deformable_model.hdev, which locates differently deformed “MVTec” logos (see fig-
ure 3.32).

Step 1: Prepare the template

First, the template is prepared. In particular, the procedure create_mvtec_logo_broadened extracts
the “MVTec” logo from an image and creates a synthetical image with a slightly broader logo. The

3.5 Local Deformable Matching B-113

obtained colored image (figure 3.32, left) is transformed into a gray value image from which an ROI,
i.e., the template image (figure 3.33 on page 114, left) is derived.

create_mvtec_logo_broadened (LogoImage, 0, 200, Width, Height)

rgb1_to_gray (LogoImage, GrayImage)

gen_rectangle1 (Rectangle, 82, 17, 177, 235)

reduce_domain (GrayImage, Rectangle, ImageReduced)

Step 2: Create the model

The template image is then used to create a model of the logo using cre-

ate_local_deformable_model. The contours of the model can be queried with
get_deformable_model_contours, e.g., to overlay a later match by it to visually inspect the
deformations (see figure 3.32 on page 112, right).

create_local_deformable_model (ImageReduced, 'auto', 0.0, 0.0, 'auto', 1, 1, \

'auto', 1, 1, 'auto', 'none', \

'use_polarity', 'auto', 'auto', [], [], \

ModelID)

get_deformable_model_contours (ModelContours, ModelID, 1)

Step 3: Find the object again

The created model is used to find instances of the logo in search images. For demonstration purposes,
the example uses synthetic search images that show the logo with various random deformations. After
transforming the colored images again into the corresponding gray value images (see, e.g., figure 3.33,
middle), the matching is applied with find_local_deformable_model.

rgb1_to_gray (SearchImage, GrayImage)

find_local_deformable_model (GrayImage, ImageRectified, VectorField, \

DeformedContours, ModelID, 0, 0, 1, 1, 1, 1, \

0.5, 1, 1, 4, 0.9, ['image_rectified', \

'vector_field','deformed_contours'], \

['deformation_smoothness','expand_border', \

'subpixel'], [Smoothness,0,1], Score, Row, \

Column)

By default, the operator returns the position of the object in the image. With the parameter ResultType,
you can additionally specify some iconic objects that are returned. In the example program, all available
iconic objects, i.e., a rectified version of the part of the search image that corresponds to the bounding
box of the ROI that was used to create the model (see figure 3.33, right), the vector field that describes
the deformations of the matched model instance, and the contours of the deformed model instance are
queried.

Step 4: Visualize the deformations

To visualize the deformations of a found model instance, the procedure gen_warped_mesh creates a
regular grid and deforms it with the information that is contained in the returned vector field. For
that, the vector field is first converted into the two real-valued images DRow and DCol using vec-

tor_field_to_real. For each point of the model, or more precisely of the bounding box that sur-

Lo
ca

lD
ef

or
m

ab
le

B-114 The Individual Approaches

Figure 3.33: From left to right: template image, correspondig part of the search image, rectified image.

rounds the template image, DRow contains the corresponding row coordinates and DCol the corre-
sponding column coordinates of the search image. Then, a regular grid with the size of the model is
created. The horizontal and vertical grid lines are created in separate loops using the operators tu-

ple_gen_sequence and tuple_gen_const. Using the images DRow and DCol, for each point of a grid
line get_grayval_interpolated queries the corresponding “deformed” point, i.e., the corresponding
coordinates of the point in the search image. These coordinates are used to create polygons that represent
the deformed horizontal and vertical grid lines.

procedure gen_warped_mesh (VectorField, WarpedMesh, Step)

gen_empty_obj (WarpedMesh)

count_obj (VectorField, Number)

for Index := 1 to Number by 1

select_obj (VectorField, ObjectSelected, Index)

vector_field_to_real (ObjectSelected, DRow, DCol)

get_image_size (VectorField, Width, Height)

for ContR := 0.5 to Height[0] - 1 by Step

Col1 := [0.5:Width[0] - 1]

tuple_gen_const (Width[0] - 1, ContR, Row1)

get_grayval_interpolated (DRow, Row1, Col1, 'bilinear', GrayRow)

get_grayval_interpolated (DCol, Row1, Col1, 'bilinear', GrayCol)

gen_contour_polygon_xld (Contour, GrayRow, GrayCol)

concat_obj (WarpedMesh, Contour, WarpedMesh)

endfor

for ContC := 0.5 to Width[0] - 1 by Step

Row1 := [0.5:Height[0] - 1]

tuple_gen_const (Height[0] - 1, ContC, Col1)

get_grayval_interpolated (DRow, Row1, Col1, 'bilinear', GrayRow)

get_grayval_interpolated (DCol, Row1, Col1, 'bilinear', GrayCol)

gen_contour_polygon_xld (Contour, GrayRow, GrayCol)

concat_obj (WarpedMesh, Contour, WarpedMesh)

endfor

endfor

return ()

The grid is displayed together with the returned contours of the deformed logo as shown in figure 3.34.

dev_display (SearchImage)

dev_display (WarpedMesh)

dev_display (DeformedContours)

3.5 Local Deformable Matching B-115

Figure 3.34: Search image (before transforming it into a gray value image) with the grid that illustrates the
deformations of the matched “MVTec” logo.

The difference between the returned rectified image and the template image is visualized as shown in
figure 3.35.

crop_domain (ImageReduced, ImagePart)

abs_diff_image (ImagePart, ImageRectified, ImageAbsDiff1, 1)

dev_display (ImageAbsDiff1)

Figure 3.35: Difference between the rectified image and the template image.

Step 5: Destroy the model

When the local deformable model is not needed anymore, it is destroyed using
clear_deformable_model.

clear_deformable_model (ModelID)

Lo
ca

lD
ef

or
m

ab
le

B-116 The Individual Approaches

The following sections go deeper into the details of the individual steps of a local deformable matching
and the parameters that have to be adjusted.

3.5.2 Select the Model ROI

As a first step of the local deformable matching, the region of interest that specifies the template image
must be selected as described, e.g., in section 2.1.1 on page 20. This region can have an arbitrary shape,
i.e., it can also contain holes or consist of several parts that are not connected. Thus, it is possible
to create an ROI that contains only “robust” parts of the object. The ROI must be selected so that it
contains all prominent structures of the object and also some pixels outside of them, as their immediate
surroundings (neighborhood) are needed to obtain the model. Furthermore, you can speed up the later
search using a subsampling (see section 3.5.3.2). For that, the ROI should not be too “thin”, because
otherwise it vanishes at higher pyramid levels! As a rule of thumb, you are on the safe side if an ROI
is 2NumLevels−1 pixels wide. That is, a width of 8 pixels allows to use 4 pyramid levels. After having
selected a suitable ROI, the reduced image is used as template image for the creation of the model.

3.5.3 Create a Suitable Local Deformable Model

Having derived the template image from the reference image, the local deformable model can be created.
Note that the local deformable matching consists of different methods to find the trained objects in
images. Depending on the selected method, one of the following operators is used to create the model:

• create_local_deformable_model creates a model for a local deformable matching that uses a
template image to derive the model.

• create_local_deformable_model_xld creates a model for a local deformable matching that
uses XLD contours to derive the model. Note that after a first match, it is strongly recommended to
determine the polarity information for the model with set_local_deformable_model_metric

(see section 2.1.3.2 on page 25 for details).

Here, we will take a closer look at how to adjust the corresponding parameters. In particular, you can

• specify which pixels are part of the model by adjusting the parameter Contrast (section 3.5.3.1),

• speed up the search by using a subsampling, i.e., by adjusting the parameter NumLevels, and
by reducing the number of model points, i.e., by adjusting the parameter Optimization (sec-
tion 3.5.3.2),

• allow a specific range of orientation and scale by adjusting the parameters AngleExtent, An-
gleStart, AngleStep, ScaleMin, ScaleMax, and ScaleStep (section 3.5.3.3 on page 118),

• specify which pixels are compared with the model in the later search by adjusting the parameters
MinContrast and Metric (section 3.5.3.4 on page 118), and

• adjust some additional (generic) parameters within ParamName and ParamValue, which is needed
only in very rare cases (section 3.5.3.5 on page 118).

3.5 Local Deformable Matching B-117

Note that when adjusting the parameters you can also let HALCON assist you:

• Use automatic parameter suggestion:

You can let HALCON suggest suitable values for many of these parameters by either setting the
corresponding parameters to the value ’auto’ within the operator that is used to create the model
or by applying determine_deformable_model_params to automatically determine values for a
local deformable model from a template image and then decide individually whether you use the
suggested values for the creation of the model. Note that both approaches return only approxi-
mately the same values and the values that are returned by the operators that are used to create the
model are more precise.

• Apply inspect_shape_model:

As the local deformable matching uses XLD contours to build the model, which is similar to shape-
based matching, you can use inspect_shape_model to try different values for the parameters
NumLevels and Contrast. The operator returns the resulting representation of a shape model
with multiple pyramid levels and thus allows you to visually check if the object of interest is
represented adequately by the model. If several combinations of parameter values do not lead to
a satisfying representation of the object, maybe the template image, i.e., the model’s ROI was not
selected properly. How to select a suitable ROI is described in section 2.1 on page 19.

Note that after the creation of the model, the model can still be modified. In section 3.5.3.6 on page 119
the possibilities for the inspection and modification of an already created model are shown.

3.5.3.1 Specify Pixels that are Part of the Model (Contrast)

For the model those pixels are selected whose contrast, i.e., gray value difference to neigh-
boring pixels, exceeds a threshold specified by the parameter Contrast when calling cre-

ate_local_deformable_model. The parameter Contrast is similar to the corresponding parameter
of shape-based matching that is described in more detail in section 3.3.3.1 on page 71. The only dif-
ference is that here small structures are not suppressed within Contrast but with the separate generic
parameter ’min_size’ that is set via ParamName and ParamValue as described in section 3.5.3.5.

3.5.3.2 Speed Up the Search using Subsampling and Point Reduction (NumLevels, Op-
timization)

To speed up the matching process, subsampling can be used (see also section 2.3.2 on page 30). There, an
image pyramid is created, consisting of the original, full-sized image and a set of downsampled images.
The model is then created and searched on the different pyramid levels.

You can specify how many pyramid levels are used via the parameter NumLevels. A further reduction
of model points can be enforced via the parameter Optimization. This may be useful to speed up
the matching in the case of particularly large models. Both parameters are similar to the corresponding
parameters of shape-based matching that are described in more detail in section 3.3.3.2 on page 72.

Lo
ca

lD
ef

or
m

ab
le

B-118 The Individual Approaches

3.5.3.3 Allow a Range of Orientation (AngleExtent, AngleStart, AngleStep) and Scale
(Scale*Min, Scale*Max, Scale*Step)

Similar to shape-based matching, you can use the parameters AngleExtent, AngleStart, AngleStep,
ScaleRMin, ScaleRMax, ScaleCMin, and ScaleCMax to adjust the range of orientation and scale in
which the model is searched (see also section 3.3.3.3 on page 73 and section 3.3.3.4 on page 74).

Note that in contrast to the ranges adjusted for shape-based matching, here the parameters can be inter-
preted rather as a kind of suggestion for the search algorithm and thus are not very strict. The ranges that
are actually used for the search are larger than specified so that also models outside the specified ranges
can be found. The actually used ranges are derived from the adjusted parameters and depend further on
the used pyramid levels and the contents of the model and the image. The larger range is used to cope
with the distortions that are typical for the local deformable matching. For example, for small distortions
of the model the model can be found even if no scale range is specified, which leads to a faster search.

3.5.3.4 Specify which Pixels are Compared with the Model (MinContrast, Metric)

The parameter MinContrast lets you specify which contrast a point in a search image must at least have
in order to be compared with the model, whereas Metric lets you specify whether and how the polarity,
i.e., the direction of the contrast must be observed.

The parameters are similar to the corresponding parameters of shape-based matching that are described
in section 3.3.3.5 on page 75. The only difference is that for local deformable matching a further value
for Metric is available that allows to observe the polarity in sub-parts of the model. A sub-part is a set
of model points that are adjacent. For different calculations of the local deformable matching, the model
is divided into a set of sub-parts that have approximatly the same size (see also section 3.6.3.5 on page
130). When setting Metric to ’ignore_part_polarity’, the different sub-parts may have different
polarities as long as the polarities of the points within the individual sub-parts are the same. ’ig-

nore_part_polarity’ is a trade-off between ’ignore_global_polarity’, which does not work
with locally changing polarities, and ’ignore_local_polarity’, which requires a very fine struc-
tured inspection and thus slows down the search significantly.

3.5.3.5 Adjust Generic Parameters (ParamName, ParamValue)

Typically, there is no need to adjust the generic parameters that are set via ParamName and ParamValue.
But in rare cases, it might be helpful to adjust the splitting of the model into sub-parts, which are needed
for different calculations of the local deformable matching, or to suppress small connected components
of the model contours.

The size of the sub-parts is adjusted setting ParamName to ’part_size’ and ParamValue to ’small’,
’medium’, or ’big’. Small connected components of the model contours can be supressed by setting
ParamName to ’min_size’. The corresponding numeric value that is specified in ParamValue describes
the number of points a connected part of the object must at least contain to be considered for the following
calculations. The effect corresponds to the suppression of small structures that can be applied for shape-
based matching within the parameter Contrast, which is described in section 3.3.3.1 on page 71.

3.5 Local Deformable Matching B-119

3.5.3.6 Inspect and Modify the Local Deformable Model

If you want to visually inspect an already created deformable model, you can use
get_deformable_model_contours to get the XLD contours that represent the model in a spe-
cific pyramid level. Note that the XLD contour of the model is located at the origin of the image and
thus a transformation may be needed for a proper visualization (see section 2.4.2 on page 35).

To inspect the current parameter values of a model, you query them with
get_deformable_model_params. This may be necessary if during the creation of the model
an automatic parameter selection was used or if the model was created within another program,
saved to file with write_deformable_model, and read from this file in the current program with
read_deformable_model. Additionally, you can query the coordinates of the origin of the model
using get_deformable_model_origin.

After the creation of the model and before you search the object in a search image, you can further
modify the model. In particular, you can apply set_deformable_model_origin to change its point of
reference. But similar to shape-based matching, when modifying the point of reference, the accuracy of
the estimated position may decrease (see section 3.3.4.7 on page 85). Therefore, if possible, the point

!of reference should not be changed. Instead, a suitable ROI for the model creation should be selected
right from the start (see section 2.1.2 on page 21).

3.5.4 Optimize the Search Process

The actual matching is applied with find_local_deformable_model. In the following, we show how
to select suitable parameters for it to adapt and optimize a matching task. In particular, we show how to

• restrict the search space to a region of interest (section 3.5.4.1),

• restrict the search space by restricting the range of orientation and scale via the parameters An-
gleStart, AngleExtent, ScaleMin, and ScaleMax (section 3.5.4.2),

• restrict the search space to a specific amount of allowed occlusions for the object, i.e., specify the
visibility of the object via the parameter MinScore (section 3.5.4.3),

• specify the used search heuristics, i.e., trade thoroughness versus speed by adjusting the parameter
Greediness (section 3.5.4.4),

• search for multiple instances of the model by adjusting the parameters NumMatches and Max-

Overlap (section 3.5.4.5),

• restrict the number of pyramid levels (NumLevels) for the search process (section 3.5.4.6 on page
121),

• specify the types of iconic results the matching should return (ResultType, section 3.5.4.6 on
page 121), and

• adjust some additional (generic) parameters within ParamName and ParamValue (section 3.5.4.8
on page 121).

Lo
ca

lD
ef

or
m

ab
le

B-120 The Individual Approaches

At the end of the matching, the model and further buffered data have to be cleared from memory with
clear_deformable_model. If you want to reuse a model, you have to store it into a file before clearing
it from memory. Then, you can read it from file again as described in more detail in section 2.2 on page
28.

3.5.4.1 Restrict the Search to a Region of Interest

The obvious way to restrict the search space and thus speed up the matching is to apply the op-
erator find_local_deformable_model not to the whole image but only to an ROI. The cor-
responding procedure is explained in more detail for shape-based matching in section 3.3.4.1 on
page 78. For local deformable matching you simply have to replace find_shape_model by
find_local_deformable_model.

3.5.4.2 Restrict the Range of Orientation and Scale (AngleStart, AngleExtent,
Scale*Min, Scale*Max)

When creating the model you already specified a suggestion for the allowed range of orientation and scale
(see section 3.5.3.3 on page 118). When calling find_local_deformable_model you can further limit
these ranges with the parameters AngleStart, AngleExtent, ScaleMin, and ScaleMax. This is useful
if you can restrict these ranges by other information, which can, e.g., be obtained by suitable image
processing operations.

Another reason for using a larger range when creating the model may be that you want to reuse the model
for other matching tasks as well.

3.5.4.3 Specify the Visibility of the Object (MinScore)

With the parameter MinScore you can specify how much of the model must be visible. A typical use of
this mechanism is to allow a certain degree of occlusion. The parameter is similar to the corresponding
parameter for shape-based matching that is described in more detail in section 3.3.4.3 on page 80.

3.5.4.4 Trade Thoroughness vs. Speed (Greediness)

With the parameter Greediness you can influence the search algorithm itself and thereby trade thor-
oughness against speed. The parameter is similar to the corresponding parameter for shape-based match-
ing that is described in more detail in section 3.3.4.4 on page 81.

3.5.4.5 Search for Multiple Instances of the Object (NumMatches, MaxOverlap)

All you have to do to search for more than one instance of the object is to set the parameter NumMatches
to the maximum number of instances you want to find. If you select the value 0, all matches are returned.

Locating more than one instance, the operator find_local_deformable_model returns the results for
the individual model instances concatenated in the output tuples (see also section 3.5.5.4 on page 124).
Note that a search for multiple objects is only slighly slower than a search for a single object.

3.5 Local Deformable Matching B-121

A second parameter, MaxOverlap, lets you specify how much two matches may overlap (as a fraction).
This parameter is similar to the corresponding parameter of shape-based matching that is described in
section 3.3.4.5 on page 82.

3.5.4.6 Restrict the Number of Pyramid Levels (NumLevels)

The parameter NumLevels, which you already specified when creating the model, allows you to use
a different (in most cases a more restrictive) value in the search process. By using the value 0 for
NumLevels, the value specified when creating the model is used.

3.5.4.7 Specify the Iconic Objects Returned by the Matching (ResultType)

By default, a position and a score are returned for each match. If you additionally want to obtain some
iconic results, you can set the parameter ResultType to ’image_rectified’, ’vector_field’, and
’deformed_contours’. With ’image_rectified’ you get a rectified version of the part of the search
image that corresponds to the bounding box of the ROI that was used to create the model (Rectified-
Image), with ’vector_field’ you get the vector field that describes the deformations of the matched
model instance (VectorField), and with ’deformed_contours’ you get the contours of the deformed
model instance (DeformedContours). The individual result types are introduced in more detail in sec-
tion 3.5.5.

3.5.4.8 Adjust Generic Parameters (ParamName, ParamValue)

Besides the parameters that correspond more or less to those used for shape-based matching, local de-
formable matching allows to adjust some generic parameters that are set via ParamName and Param-

Value. Typically, there is no need to adjust them. But if, e.g., a low accuracy of the matching is
sufficient, you can speed up the matching by a reduction or deactivation of the subpixel precision or
by changing the discretization steps for the orientation or scale that were set during the creation of the
model.

Additionally, you can adjust the expected “smoothness” of the deformation. In particular, if the deforma-
tions vary locally, i.e., if the deformations are expected to be rather different within a small neighborhood,
the value of ’deformation_smoothness’ may be set to a smaller value, whereas for an object with an
expected “smooth” transition between the deformations the parameter may be set to a higher value.

Furthermore, you can expand the border of the optionally returned rectified image (see section 3.5.4.7).
By default, the section of the search image that is rectified corresponds to the bounding box of the ROI
that was used to create the model. If a larger section is needed, e.g., if neighboring parts that are vis-
ible in the search image are needed as well for a further processing of the image, you can expand the
border of the rectified image with the parameters ’expand_border’, ’expand_border_top’, ’ex-
pand_border_bottom’, ’expand_border_left’, or ’expand_border_right’, respectively. If,
e.g., in the example progam only the letters “MVT” would have been contained in the model, but the
letters “ec” would have been needed as well, the parameter ’expand_border_right’ could have been
set to 50 to expand the image section by 50 pixels. Note that the rectification is reliable only for the
image section that corresponds to the model ROI, as for the neighboring parts of the search image an

Lo
ca

lD
ef

or
m

ab
le

B-122 The Individual Approaches

extrapolation is applied. Thus, the larger the expanded border is, the less accurate is the result towards
the image border.

For further information, please refer to the description of find_local_deformable_model in the Ref-
erence Manual.

3.5.5 Use the Specific Results of Local Deformable Matching

The results of local deformable matching differ from those of the other matching approaches. Though it
returns also a position and a score, it does not return an orientation or even a scale. Instead, a set of iconic
objects can be returned that helps to inspect the deformations of the found object instance. Depending
on the selected values of ResultType, the following iconic objects are returned:

• RectifiedImage: the rectified part of the search image that corresponds to the bounding box of
the ROI that was used to create the model (section 3.5.5.1).

• VectorField: the vector field describing the deformations of the found model instance (sec-
tion 3.5.5.2).

• DeformedContours: the contours of the deformed model instance (section 3.5.5.3).

Similar to shape-based matching, local deformable matching can return multiple instances of a model.
How to use these multiple instances is shown in section 3.6.5.1 on page 135.

3.5.5.1 The Rectified Image

The first of the iconic objects that can be returned by the local deformable matching is the rectified part
of the search image that corresponds to the bounding box of the ROI that was used to create the model
(see figure 3.36).

It can be used, e.g., as was introduced in the first example to show the difference between the rectified
image and the corresponding part of the reference image (see section 3.5.1 on page 112). Another use
may be that the rectified image is needed for a further image processing task. Note that if a larger
section of the search image is needed for the further processing, it is possible to expand the borders of
ImageRectified as is described in section 3.5.4.8 on page 121.

3.5.5.2 The Vector Field

Another iconic object that is returned by the matching is a vector field that can be used, e.g., to visualize
the deformations. For that, VectorField can be transformed into a grid as was shown in the first
example (page 113). Note that to directly display the vector field is not reasonable, as in contrast to a
vector field that is returned, e.g., by optical flow, no relative but absolute coordinates are returned. In
particular, the vector field that is returned, e.g., by optical_flow_mg describes the releative movement
of the points from one image to another image of the same size. The components of the vector field that
can be queried with vector_field_to_real contain for each point the relative movement in row and
column direction. In contrast, the vector field that is returned by local deformable matching describes the

3.5 Local Deformable Matching B-123

Figure 3.36: (left) search image; (right) rectified image part.

movement of points from the model, or more precisely from the bounding box that surrounds the template
image, to a search image that typically is larger than the model. Thus, instead of the relative movement
of each point, the vector field contains for each model point the corresponding absolute coordinates of
the search image.

Besides visualization purposes, the vector field can be used to get a rectification map that can be used for
other applications as well. If, e.g., the deformations of a model instance do not stem from a deformed
object but from significant camera distortions, you may use the returned vector field to compensate
for the camera distortions in other images. For that, the model either must be a synthetic model (see
section 2.1.3 on page 23) or it must be created from an image that was made with a camera without
significant distortions. The vector field that is returned by the matching in a search image that is made by
the distorted camera can then be transformed into a map with convert_map_type. This map can then
be used to rectify other images that were made with the same camera.

3.5.5.3 The Deformed Contours

At last, the deformed contours can be returned. Similar to the model contours the DeformedContours

can be used for visualization purposes (see figure 3.37) or for a visual inspection of the difference be-
tween the model and the found model instance. For the latter, you can either overlay the matching result
with the model contours or overlay the model with the deformed contours. Whereas the model contours
by default are located at the origin of the image and thus must be transformed for a proper visualization
as described in section 2.4.3.1 on page 39, the deformed contours are located already at the position of
the match.

Lo
ca

lD
ef

or
m

ab
le

B-124 The Individual Approaches

Figure 3.37: (left) search image; (right) search image overlaid by deformed contours.

3.5.5.4 Deal with Multiple Matches

If multiple instances of the object are searched and found, the results are concatenated in tuples. For
example, Score, which is a single value for a single model instance, is now a tuple for which the number
of elements corresponds to the number of found model instances. The access of the value for a specific
instance is similar to the proceeding described in section 3.3.4.5 on page 82 for shape-based matching.

The iconic output object DeformedContours is already returned as a tuple for a single model instance.
For multiple instances, the values are simply concatenated. To access them for a specific match, you
must know the number of elements returned for a single model instance. This can be obtained by calling
count_obj for the model contours that can be queried with get_deformable_model_contours after
the model creation. If, e.g., the model consists of five contours, in the tuple returned for the deformed
contours, the first five values belong to the first instance, the next five values belong to the second
instance, etc. An example for the access of the values for each instance is described in more detail for
calibrated perspective deformable matching in section 3.6.4.5 on page 134.

3.6 Perspective Deformable Matching

Like shape-based matching, perspective deformable matching extracts contours and matches their shapes
against the shapes of previously created models. But in contrast to shape-based matching, also perspec-
tively deformed contours can be found. For the perspective deformable matching, an uncalibrated as
well as a calibrated version is provided. The following sections show

• a first example for a perspective deformable matching (section 3.6.1),

• how to select an appropriate ROI to derive the template image from the reference image (sec-
tion 3.6.2 on page 127),

3.6 Perspective Deformable Matching B-125

• how to create a suitable model (section 3.6.3 on page 128),

• how to optimize the search (section 3.6.4 on page 132), and

• how to deal with the results that are specific for the perspective deformable matching (section 3.6.5
on page 135).

3.6.1 A First Example

In this section we give a quick overview of the matching process with perspective deformable match-
ing. To follow the example actively, start the HDevelop example program hdevelop\Applications\

Traffic-Monitoring\detect_road_signs.hdev, which locates road signs independently from
their direction. Actually, the program searches an attention sign and a dead end road sign. In the follow-
ing, we show the proceeding exemplarily for the attention sign.

Step 1: Select the object in the reference image

First, the colored reference image is read and a channel that clearly shows the attention sign (see fig-
ure 3.38, left) is accessed with access_channel. As the attention sign in the search images is expected
to be much smaller than in the reference image, the reference image is scaled with zoom_image_factor
to better fit the expected size (see figure 3.38, middle). The creation of perspective deformable models
is based on XLD contours, which is similar to shape-based matching. Thus, inspect_shape_model
(see section 3.3.3 on page 69) can be used to get suitable values for the parameters NumLevels and
Contrast, which are needed for the creation of shape models as well as for the creation of perspective
deformable models. The returned representation of a shape model with multiple pyramid levels can be
used to visually check a potential model (see figure 3.38, right).

read_image (ImageAttentionSign, 'road_signs/attention_road_sign')
access_channel (ImageAttentionSign, Image, Channel[0])

zoom_image_factor (Image, ImageZoomed, 0.1, 0.1, 'weighted')
inspect_shape_model (ImageZoomed, ModelImages, ModelRegions, 3, 20)

original number of pixels original number of pixels / 10

Figure 3.38: From left to right: specific channel of colored reference image, scaled image, inspection of
the shape model.

P
er

sp
ec

tiv
e

D
ef

or
m

.

B-126 The Individual Approaches

Step 2: Create the model

How to obtain a proper template image from a reference image is described in section 2.1 on page 19.
In this case, a further reduction to a more restricted ROI is not needed. The model is obtained from the
template image with create_planar_uncalib_deformable_model.

create_planar_uncalib_deformable_model (ImageZoomed, 3, 0.0, 0.0, 0.1, \

ScaleRMin[0], ScaleRMax[0], 0.05, \

1.0, 1.0, 0.5, 'none', \

'use_polarity', 'auto', 'auto', [], \

[], ModelID)

Step 3: Find the object again

To speed up the matching, the search space is restricted first to a rectangular region and then, within this
region, to an ROI consisting of a set of blobs (see figure 3.39, left). This set of blobs is obtained by the
procedure determine_area_of_interest, which exploits the available color information and applies
a blob analysis.

gen_rectangle1 (Rectangle1, 28, 71, 69, 97)

for Index := 1 to 16 by 1

read_image (Image, 'road_signs/street_' + Index$'.02')
determine_area_of_interest (Image, Rectangle, AreaOfInterest)

reduce_domain (Image, AreaOfInterest, ImageReduced)

Figure 3.39: (left) ROI derived from the color image; (right) found match for the model of the attention
sign.

Within the resulting ROI, the actual matching is applied using the operator
find_planar_uncalib_deformable_model. Note that the search is applied in the same image
channel that was already used for the model creation.

3.6 Perspective Deformable Matching B-127

for Index2 := 0 to |Models| - 1 by 1

access_channel (ImageReduced, ImageChannel, Channel[Index2])

find_planar_uncalib_deformable_model (ImageChannel, Models[Index2], \

0, 0, ScaleRMin[Index2], \

ScaleRMax[Index2], \

ScaleCMin[Index2], \

ScaleCMax[Index2], 0.85, 1, \

0, 2, 0.4, [], [], HomMat2D, \

Score)

The result of the matching for each found model instance is a 2D projective transformation matrix (ho-
mography) and a score that represents the quality of the matching. Using the homographies, the result is
visualized for the successful matches. In particular, the contours of the model are queried and projected
into the search image as described in more detail in section 2.4.5 on page 51 (see figure 3.39 on page
126, right).

if (|HomMat2D|)

get_deformable_model_contours (ModelContours, Models[Index2], 1)

projective_trans_contour_xld (ModelContours, ContoursProjTrans, \

HomMat2D)

endif

endfor

endfor

Step 4: Destroy the model

When the perspective deformable model is not needed anymore, it is destroyed using
clear_deformable_model.

clear_deformable_model (Models[Index1])

The following sections go deeper into the details of the individual steps of a perspective deformable
matching and the parameters that have to be adjusted.

3.6.2 Select the Model ROI

As a first step of the perspective deformable matching, the region of interest that specifies the template
image must be selected as described, e.g., in section 2.1.1 on page 20. This region can have an arbitrary
shape, i.e., it can also contain holes or consist of several parts that are not connected. Thus, it is possible
to create an ROI that contains only “robust” parts of the object. The ROI must be selected so that it
contains all prominent structures of the object and also some pixels outside of them, as their immediate
surroundings (neighborhood) are needed to obtain the model. Furthermore, you can speed up the later
search using a subsampling (see section 3.6.3.2 on page 129). For that, the ROI should not be too “thin”,
because otherwise it vanishes at higher pyramid levels! As a rule of thumb, you are on the safe side
if an ROI is 2NumLevels−1 pixels wide. That is, a width of 8 pixels allows to use 4 pyramid levels.
After having selected a suitable ROI, the reduced image is used as template image for the creation of the
model.

P
er

sp
ec

tiv
e

D
ef

or
m

.

B-128 The Individual Approaches

3.6.3 Create a Suitable Perspective Deformable Model

Having derived the template image from the reference image, the perspective deformable model can be
created. Note that the perspective deformable matching consists of different methods to find the trained
objects in images. Depending on the selected method, one of the following operators is used to create
the model:

• create_planar_uncalib_deformable_model creates a model for an uncalibrated perspective
deformable matching that uses a template image to derive the model.

• create_planar_uncalib_deformable_model_xld creates a model for an uncalibrated per-
spective deformable matching that uses XLD contours to derive the model. Note that after a
first match, it is strongly recommended to determine the polarity information for the model with
set_planar_uncalib_deformable_model_metric (see section 2.1.3.2 on page 25 for details).

• create_planar_calib_deformable_model creates a model for a calibrated perspective de-
formable matching that uses a template image to derive the model.

• create_planar_calib_deformable_model_xld creates a model for a calibrated perspec-
tive deformable matching that uses XLD contours to derive the model. Note that after a first
match, it is strongly recommended to determine the polarity information for the model with
set_planar_calib_deformable_model_metric (see section 2.1.3.2 on page 25 for details).

Here, we will take a closer look at how to adjust the corresponding parameters. In particular, you can

• specify which pixels are part of the model by adjusting the parameter Contrast (section 3.6.3.1),

• speed up the search by using a subsampling, i.e., by adjusting the parameter NumLevels, and
by reducing the number of model points, i.e., by adjusting the parameter Optimization (sec-
tion 3.6.3.2),

• allow a specific range of orientation and scale by adjusting the parameters AngleExtent, An-
gleStart, AngleStep, ScaleMin, ScaleMax, and ScaleStep (section 3.6.3.3),

• specify which pixels are compared with the model in the later search by adjusting the parameters
MinContrast and Metric (section 3.6.3.4 on page 130),

• adjust some additional (generic) parameters within ParamName and ParamValue, which is needed
only in very rare cases (section 3.6.3.5 on page 130), and

• specify the camera parameters and the reference pose that are needed only for the calibrated match-
ing (CamParam and ReferencePose, see section 3.7.3.3 on page 142).

Note that when adjusting the parameters you can also let HALCON assist you:

• Use automatic parameter suggestion:

You can let HALCON suggest suitable values for many of these parameters by either setting the
corresponding parameters to the value ’auto’ within the operator that is used to create the model

3.6 Perspective Deformable Matching B-129

or by applying determine_deformable_model_params to automatically determine values for a
perspective deformable model from a template image and then decide individually if you use the
suggested values for the creation of the model. Note that both approaches return only approxi-
mately the same values and the values that are returned by the operators that are used to create the
model are more precise.

• Apply inspect_shape_model:

As the perspective deformable matching uses XLD contours to build the model, which is similar
to shape-based matching, you can use inspect_shape_model to try different values for the pa-
rameters NumLevels and Contrast. The operator returns the resulting representation of a shape
model with multiple pyramid levels and thus allows you to visually check if the object of interest
is represented adequately by the model. If several combinations of parameter values do not lead to
a satisfying representation of the object, maybe the template image, i.e., the model’s ROI was not
selected properly. How to select a suitable ROI is described in section 2.1 on page 19.

Note that after the creation of the model, the model can still be modified. In section 3.6.3.7 on page 131
the possibilities for the inspection and modification of an already created model are shown.

3.6.3.1 Specify Pixels that are Part of the Model (Contrast)

For the model those pixels are selected whose contrast, i.e., gray value difference to neigh-
boring pixels, exceeds a threshold specified by the parameter Contrast when calling cre-

ate_planar_uncalib_deformable_model or create_planar_calib_deformable_model. The
parameter Contrast is similar to the corresponding parameter of shape-based matching that is described
in more detail in section 3.3.3.1 on page 71. The only difference is that here small structures are not sup-
pressed within Contrast but with the separate generic parameter ’min_size’ that is set via ParamName
and ParamValue as described in section 3.6.3.5.

3.6.3.2 Speed Up the Search using Subsampling and Point Reduction (NumLevels, Op-
timization)

To speed up the matching process, subsampling can be used (see also section 2.3.2 on page 30). There, an
image pyramid is created, consisting of the original, full-sized image and a set of downsampled images.
The model is then created and searched on the different pyramid levels.

You can specify how many pyramid levels are used via the parameter NumLevels. A further reduction
of model points can be enforced via the parameter Optimization. This may be useful to speed up
the matching in the case of particularly large models. Both parameters are similar to the corresponding
parameters of shape-based matching that are described in more detail in section 3.3.3.2 on page 72.

3.6.3.3 Allow a Range of Orientation (AngleExtent, AngleStart, AngleStep) and Scale
(Scale*Min, Scale*Max, Scale*Step)

Similar to shape-based matching, you can use the parameters AngleExtent, AngleStart, AngleStep,
ScaleRMin, ScaleRMax, ScaleCMin, and ScaleCMax to adjust the range of orientation and scale in
which the model is searched (see also section 3.3.3.3 on page 73 and section 3.3.3.4 on page 74).

P
er

sp
ec

tiv
e

D
ef

or
m

.

B-130 The Individual Approaches

Note that in contrast to the ranges adjusted for shape-based matching, here the parameters can be inter-
preted rather as a kind of suggestion for the search algorithm and thus are not very strict. The ranges that
are actually used for the search are larger than specified so that also models outside the specified ranges
can be found. The actually used ranges are derived from the adjusted parameters and depend further on
the used pyramid levels and the contents of the model and the image. The larger range is used to cope
with the perspective distortions that are typical for the perspective deformable matching. For example,
for small perspective distortions of the model the model can be found even if no scale range is specified,
which leads to a faster search.

3.6.3.4 Specify which Pixels are Compared with the Model (MinContrast, Metric)

The parameter MinContrast lets you specify which contrast a point in a search image must at least have
in order to be compared with the model, whereas Metric lets you specify whether and how the polarity,
i.e., the direction of the contrast must be observed.

The parameters are similar to the corresponding parameters of shape-based matching that are described
in section 3.3.3.5 on page 75. The only difference is that for perspective deformable matching a fur-
ther value for Metric is available that allows to observe the polarity in sub-parts of the model. A
sub-part is a set of model points that are adjacent. For different calculations of the perspective de-
formable matching, the model is divided into a set of sub-parts that have approximatly the same size
(see also section 3.6.3.5). When setting Metric to ’ignore_part_polarity’, the different sub-parts
may have different polarities as long as the polarities of the points within the individual sub-parts are the
same. This is helpful, e.g., if due to the movement in the 3D space different reflections on the object
are expected. As these reflections typically are not too small, ’ignore_part_polarity’ is a trade-
off between ’ignore_global_polarity’, which does not work with locally changing polarities, and
’ignore_local_polarity’, which requires a very fine structured inspection and thus slows down the
search significantly.

3.6.3.5 Adjust Generic Parameters (ParamName, ParamValue)

Typically, there is no need to adjust the generic parameters that are set via ParamName and Param-

Value. But in rare cases, it might be helpful to adjust the splitting of the model into sub-parts, which are
needed for different calculations of the perspective deformable matching, or to suppress small connected
components of the model contours.

The size of the sub-parts is adjusted setting ParamName to ’part_size’ and ParamValue to ’small’,
’medium’, or ’big’.

Small connected components of the model contours can be supressed by setting ParamName to
’min_size’. The corresponding numeric value that is specified in ParamValue describes the number
of points a connected part of the object must at least contain to be considered for the following calcula-
tions. The effect corresponds to the suppresion of small structures that can be applied for shape-based
matching within the parameter Contrast, which is described in section 3.3.3.1 on page 71.

3.6 Perspective Deformable Matching B-131

3.6.3.6 Specify the Camera Parameters and the Reference Pose (CamParam, Reference-
Pose)

For the calibrated matching, the internal camera parameters (CamParam) and a reference pose (Refer-
encePose) have to be specified. We recommend to obtain both using a camera calibration as described
in the Solution Guide III-C, section 3.2 on page 68. Other approaches for determining the pose of the
object plane comprise a manual measurement of the extents of the model, which is rather intricate and of-
ten inaccurate, stereo vision (see Solution Guide III-C, chapter 5 on page 139), or 3D laser triangulation,
e.g., using sheet of light (see Solution Guide III-C, chapter 6 on page 177).

3.6.3.7 Inspect and Modify the Perspective Deformable Model

If you want to visually inspect an already created deformable model, you can
use get_deformable_model_contours to get the XLD contours that represent the
model in a specific pyramid level. In case that the model was generated by cre-

ate_planar_calib_deformable_model_xld, the contours by default are returned in the world
coordinate system in metric units. Here, the contours must be transformed by the returned pose for
visualizing a match. In all other cases, the contours of the model by default are returned in the image
coordinate system in pixel units. For the calibrated matching you can specify the coordinate system in
which the contours are returned when calling get_deformable_model_contours with the operator
set_deformable_model_param.

To inspect the current parameter values of a model, you query them with
get_deformable_model_params. This may be necessary if during the creation of the model
an automatic parameter selection was used or if the model was created within another program,
saved to file with write_deformable_model, and read from this file in the current program with
read_deformable_model. Additionally, you can query the coordinates of the origin of the model
using get_deformable_model_origin.

After the creation of the model and before you search the object in a search image, you can further
modify the model. In particular, you can apply set_deformable_model_origin to change its point of
reference and thus, in case of a calibrated matching, also its reference pose. But similar to shape-based
matching, when modifying the point of reference, the accuracy of the estimated position may decrease
(see section 3.3.4.7 on page 85). Therefore, if possible, the point of reference should not be changed.

!Instead, a suitable ROI for the model creation should be selected right from the start (see section 2.1.2
on page 21).

For the case that you nevertheless need to modify the point of reference, e.g., if the origin should be
placed on a specific part of the object, e.g., a corner of the object or a drill hole, and you want to apply
a calibrated matching, we here shortly describe the relation between the reference pose, the model pose,
and an offset that is manually applied to the point of reference. In particular, when creating the template
model for a calibrated matching, the reference pose, which was obtained, e.g., by a camera calibration, is
automatically modified by an offset so that its origin corresponds to the projection of the center of gravity
of a rectified version of the template image (i.e., the ROI) onto the reference plane and the axes of the
obtained model coordinate system are parallel to those of the initial reference pose (see figure 3.40).
If you use set_deformable_model_origin to additionally apply an offset to the origin of the thus
obtained model pose, the offset is set in image coordinates for the internally rectified template image.
To determine the neccessary number of pixels for the row and column direction it is convenient to query

P
er

sp
ec

tiv
e

D
ef

or
m

.

B-132 The Individual Approaches

the rectified contour of the object from the template model with get_deformable_model_contours.
After setting a manual offset, the obtained image point is automatically projected to the object plane as
origin of the modified pose and the pose is adapted accordingly for all following operations.

Image

Internal offset

Object plane

ROI

Camera

Model pose with offset

Reference pose

Model pose

Manual offset

xr

z r

y r

z o

y o

xo

z m
ym

xm

y r z rxr

ox y o z o

mx y m z m

Figure 3.40: Internal and manual offset for the calibrated perspective matching: the offset from the ref-
erence pose to the model pose is calculated automatically from the reference pose, the
internal camera parameters, and the template image. An additional offset can be applied
manually and is defined in image coordinates.

3.6.4 Optimize the Search Process

The actual matching is applied by one of the following operators:

• find_planar_uncalib_deformable_model searches for the best matches of an uncalibrated
perspective deformable model. It returns a 2D projective transformation matrix (homography) and
the score describing the quality of the match.

• find_planar_calib_deformable_model searches for the best matches of a calibrated perspec-
tive deformable model. It returns the 3D pose of the object, the six mean square deviations, re-
spectively the 36 covariances of the pose parameters, and the score describing the quality of the
match.

3.6 Perspective Deformable Matching B-133

In the following, we show how to select suitable parameters for these operators to adapt and optimize a
matching task. In particular, we show how to

• restrict the search space to a region of interest (section 3.6.4.1),

• restrict the search space by restricting the range of orientation and scale via the parameters An-
gleStart, AngleExtent, ScaleMin, and ScaleMax (section 3.6.4.2),

• restrict the search space to a specific amount of allowed occlusions for the object, i.e., specify the
visibility of the object via the parameter MinScore (section 3.6.4.3),

• specify the used search heuristics, i.e., trade thoroughness versus speed by adjusting the parameter
Greediness (section 3.6.4.4),

• search for multiple instances of the model by adjusting the parameters NumMatches and Max-

Overlap (section 3.6.4.5),

• restrict the number of pyramid levels (NumLevels) for the search process (section 3.6.4.6), and

• adjust some additional (generic) parameters within ParamName and ParamValue (section 3.6.4.7
on page 135).

At the end of the matching, the model and further buffered data have to be cleared from memory with
clear_deformable_model. If you want to reuse a model, you have to store it into a file before clearing
it from memory. Then, you can read it from file again as described in more detail in section 2.2 on page
28.

3.6.4.1 Restrict the Search to a Region of Interest

The obvious way to restrict the search space and thus speed up the matching is to apply the opera-
tor find_planar_uncalib_deformable_model or find_planar_calib_deformable_model not
to the whole image but only to an ROI. The corresponding procedure is explained in more de-
tail for shape-based matching in section 3.3.4.1 on page 78. For perspective deformable matching
you simply have to replace find_shape_model by find_planar_uncalib_deformable_model or
find_planar_calib_deformable_model, respectively.

3.6.4.2 Restrict the Range of Orientation and Scale (AngleStart, AngleExtent,
Scale*Min, Scale*Max)

When creating the model you already specified a suggestion for the allowed range of orientation and
scale (see section 3.6.3.3 on page 129). When calling find_planar_uncalib_deformable_model

or find_planar_calib_deformable_model you can further limit these ranges with the parameters
AngleStart, AngleExtent, ScaleMin, and ScaleMax. This is useful if you can restrict these ranges
by other information, which can, e.g., be obtained by suitable image processing operations.

Another reason for using a larger range when creating the model may be that you want to reuse the model
for other matching tasks as well.

P
er

sp
ec

tiv
e

D
ef

or
m

.

B-134 The Individual Approaches

3.6.4.3 Specify the Visibility of the Object (MinScore)

With the parameter MinScore you can specify how much of the model must be visible. A typical use of
this mechanism is to allow a certain degree of occlusion. The parameter is similar to the corresponding
parameter for shape-based matching that is described in more detail in section 3.3.4.3 on page 80.

3.6.4.4 Trade Thoroughness vs. Speed (Greediness)

With the parameter Greediness you can influence the search algorithm itself and thereby trade thor-
oughness against speed. The parameter is similar to the corresponding parameter for shape-based match-
ing that is described in more detail in section 3.3.4.4 on page 81.

3.6.4.5 Search for Multiple Instances of the Object (NumMatches, MaxOverlap)

All you have to do to search for more than one instance of the object is to set the parameter NumMatches
to the maximum number of instances you want to find. If you select the value 0, all matches are returned.

Locating more than one instance, the operators find_planar_uncalib_deformable_model and
find_planar_calib_deformable_model return the results for the individual model instances con-
catenated in the output tuples. That is, the Score, which is a single value for a single model instance,
is now returned as a tuple for which the number of elements corresponds to the number of found model
instances. For the results that are already returned as tuples for a single model instance, the number of
elements multiplies by the number of found instances. These results comprise the projective transforma-
tion matrix (HomMat2D) for the uncalibrated matching or the 3D pose (Pose) and the standard deviations
or covariances (CovPose) for the calibrated matching. How to access the values for a specific match is
shown in section 3.6.5.1. Note that a search for multiple objects is only slighly slower than a search for
a single object.

A second parameter, MaxOverlap, lets you specify how much two matches may overlap (as a fraction).
This parameter is similar to the corresponding parameter of shape-based matching that is described in
section 3.3.4.5 on page 82.

3.6.4.6 Restrict the Number of Pyramid Levels (NumLevels)

The parameter NumLevels, which you already specified when creating the model, allows you to use
a different (in most cases a more restrictive) value in the search process. By using the value 0 for
NumLevels, the value specified when creating the model is used.

Optionally, NumLevels can contain a second value, so that you can specify not only the highest but also
the lowest pyramid level used for the search. If the search is aborted on a pyramid level that is higher than
the first pyramid level, which corresponds to the original, full-sized image, the search becomes faster.
On the other hand, the search is then also less robust and less accurate. If objects should be found also in
images of poor quality, e.g., if the object is defocused or noisy, you can activate the increased tolerance
mode by specifying the second value negatively. Then, the matches on the lowest pyramid level that still
provides matches are returned.

3.6 Perspective Deformable Matching B-135

3.6.4.7 Adjust Generic Parameters (ParamName, ParamValue)

Besides the parameters that correspond more or less to those used for shape-based matching, perspec-
tive deformable matching allows to adjust some generic parameters that are set via ParamName and
ParamValue. Typically, there is not need to adjust them. But if, e.g., a low accuracy of the matching
is sufficient, you can speed up the matching by a reduction or deactivation of the subpixel precision or
by changing the discretization steps for the orientation or scale that were set during the creation of the
model. To avoid false positive matches, you can also restrict the distortions of the angles and scales. For
further information, please refer to the description of find_planar_uncalib_deformable_model in
the Reference Manual.

3.6.5 Use the Specific Results of Perspective Deformable Matching

The perspective deformable matching returns for the uncalibrated case a 2D projective transformation
matrix (HomMat2D), for the calibrated case a 3D pose (Pose) and either the standard deviations or the
covariances (CovPose), and for both cases a score (Score) that evaluates the quality of the returned
object location. The 2D projective transformation matrix and the 3D pose can be used, e.g., to transform
a structure of the reference image into the search image as described in section 2.4.5 on page 51 for
the 2D projective transformation matrix and in section 2.4.6 on page 54 for the 3D pose. Similar to the
shape-based matching, perspective deformable matching can return multiple instances of a model. How
to use these multiple instances is shown in section 3.6.5.1.

3.6.5.1 Deal with Multiple Matches

If multiple instances of the object are searched and found, the results are concatenated in tuples. In
particular, Score, which is a single value for a single model instance, is now a tuple for which the
number of elements corresponds to the number of found model instances. The access of the value for
a specific instance is similar to the proceeding described in section 3.3.4.5 on page 82 for shape-based
matching.

The parameters HomMat2D, Pose, and CovPose are already returned as tuples for a single model in-
stance. For multiple instances, the values are simply concatenated. To access them for a specific
match, you must know the number of elements returned for a single model instance, which is nine
for a single projective transformation matrix, seven for a single 3D pose, and either six (’default’) or
36 elements (generic parameter ’cov_pose_mode’ set to ’covariances’) for the single instance’s
standard deviations or covariances, respectively. Then, e.g., in the tuple containing the 3D poses
that are returned by a calibrated matching, the first seven values belong to the first instance, the next
seven values belong to the second instance, etc. An example for the access of the values for each in-
stance is the HDevelop example program hdevelop\Applications\Position-Recognition-3D\

locate_engine_parts.hdev, which locates the engine parts shown in figure 3.41. In the example, the
3D poses of the individual model instances are accessed by selecting specific subsets of the tuples using
tuple_select_range.

P
er

sp
ec

tiv
e

D
ef

or
m

.

B-136 The Individual Approaches

find_planar_calib_deformable_model (Image, ModelID, rad(0), rad(360), 1, \

1, 1, 1, 0.65, 0, 0, 3, 0.75, [], \

[], Pose, CovPose, Score)

for Index1 := 0 to |Score| - 1 by 1

tuple_select_range (Pose, Index1 * 7, ((Index1 + 1) * 7) - 1, \

PoseSelected)

pose_to_hom_mat3d (PoseSelected, HomMat3D)

endfor

Figure 3.41: 3D poses of engine parts obtained by a calibrated perspective deformable matching.

3.7 Descriptor-Based Matching

Similar to the perspective deformable matching, the descriptor-based matching is able to find objects
even if they are perspectively deformed. Again, the matching can be applied either for a calibrated
camera or for an uncalibrated camera. In contrast to the perspective deformable matching, the template
is not built by the shapes of contours but by a set of so-called interest points. These points are first
extracted by a detector and then are described, i.e., classified according to their location and their local
gray value neighborhood, by a descriptor.

The following sections show

• a first example for a descriptor-based matching (section 3.7.1),

3.7 Descriptor-Based Matching B-137

• how to select an appropriate ROI to derive the template image from the reference image (sec-
tion 3.7.2 on page 139),

• how to create a suitable model (section 3.7.3 on page 139),

• how to optimize the search (section 3.7.4 on page 142), and

• how to deal with the results that are specific for descriptor-based matching (section 3.7.5 on page
146).

3.7.1 A First Example

In this section we give a quick overview of the matching process with (calibrated) descriptor-based
matching. To follow the example actively, start the HDevelop program hdevelop\Applications\

Object-Recognition-2D\locate_cookie_box.hdev, which locates a cookie box label that is
aligned in different directions.

Step 1: Select the object in the reference image

First, the reference image is read and the image is reduced to a rectangular ROI. That is, a template image
is derived that contains only the label of one specific side of a cookie box.

read_image (Image, 'packaging/cookie_box_01')
gen_rectangle1 (Rectangle, 224, 115, 406, 540)

reduce_domain (Image, Rectangle, ImageReduced)

As a calibrated matching is performed, the camera parameters and the reference pose of the label relative
to the camera are needed. For a precise matching, these should be obtained, e.g., by a camera calibration
as described in the Solution Guide III-C, section 3.2 on page 68. In the example, the pose is obtained by
corresponding points, in particular by the image coordinates and the estimated world coordinates of the
corner points of the rectangle from which the ROI was created.

Step 2: Create the model

The camera parameters and the reference pose are input to create_calib_descriptor_model, which
is applied to create the calibrated descriptor model. Within the operator, the detector is selected and
parameters for the detector as well as for the descriptor are specified. In this case, the parameters for
the detector are specified with [], i.e., the default values are selected. To be able to reuse the created
descriptor model, it is stored to file with write_descriptor_file.

create_calib_descriptor_model (ImageReduced, CamParam, Pose, \

'harris_binomial', [], [], ['depth', \

'number_ferns','patch_size','min_scale', \

'max_scale'], [11,30,17,0.4,1.2], 42, \

ModelID)

write_descriptor_model (ModelID, 'cookie_box_model.dsm')

Step 3: Find the object again

find_calib_descriptor_model now locates the cookie box label in the search images. The returned
3D poses describe the relation between the world coordinates of the model and the world coordinates of
the found matches. Figure 3.42 shows a search image with the visualized result.

D
es

cr
ip

to
r-

ba
se

d

B-138 The Individual Approaches

Figure 3.42: 3D pose of cookie box label obtained by calibrated descriptor-based matching.

for Index := 1 to 10 by 1

read_image (Image, 'packaging/cookie_box_' + Index$'.02')
find_calib_descriptor_model (Image, ModelID, [], [], [], [], 0.25, 1, \

CamParam, 'num_points', Pose, Score)

endfor

Step 4: Visualize the match

The result is visualized by different means. First, the interest points of the found model instance are
queried with get_descriptor_model_points and can be immediately displayed as crosses using
gen_cross_contour_xld.

get_descriptor_model_points (ModelID, 'search', 0, Row, Col)

gen_cross_contour_xld (Cross1, Row, Col, 6, 0.785398)

Then, the 3D coordinate system of the 3D pose is visualized by the procedure disp_3d_coord_system.

disp_3d_coord_system (WindowHandle, CamParam, Pose, 0.07)

Finally, the rectangle that presents the outline of the cookie box label is displayed. For that, the rectangle
must pass through different transformation steps. In particular, a transformation from the reference image
to the world coordinate system (WCS) is followed by a 3D affine transformation within the WCS, which
is followed by a transformation from the WCS to the search image.

As regions in HALCON cannot be transformed by a 3D transformation, the corner points of the rectangle

3.7 Descriptor-Based Matching B-139

must be transformed instead. Here, the world coordinates of the rectangle’s corner points are obtained
with image_points_to_world_plane.

image_points_to_world_plane (CamParam, Pose, RowsRoi, ColumnsRoi, 'm', \

XOuterBox, YOuterBox)

To apply the following 3D affine transformation with affine_trans_point_3d, the 3D pose that
was returned by the matching must be converted into a 3D homogeneous transformation matrix using
pose_to_hom_mat3d.

pose_to_hom_mat3d (Pose, HomMat3D)

affine_trans_point_3d (HomMat3D, XOuterBox, YOuterBox, [0,0,0,0], \

XTrans, YTrans, ZTrans)

The 3D coordinates obtained by the 3D affine transformation are then projected with
project_3d_point into the search image, so that the rectangle can be reconstructed and displayed.

project_3d_point (XTrans, YTrans, ZTrans, CamParam, RowTrans, \

ColTrans)

gen_contour_polygon_xld (Contour, RowTrans, ColTrans)

close_contours_xld (Contour, Contour)

dev_display (Contour)

Step 5: Destroy the model

When the descriptor model is not needed anymore, it is destroyed using clear_descriptor_model.

clear_descriptor_model (ModelID)

The following sections go deeper into the details of the individual steps of a descriptor-based matching
and the parameters that have to be adjusted.

3.7.2 Select the Model ROI

As a first step of the descriptor-based matching, the region of interest that specifies the template image
must be selected as described, e.g., in section 2.1.1 on page 20. This region can have an arbitrary shape,
i.e., it can also contain holes or consist of several parts that are not connected. Thus, it is possible to create
an ROI that contains only “robust” parts of the object. The ROI must be selected so that potentially
important interest points are not directly at the border of the region, as the immediate surroundings
(neighborhood) of the interest points are needed to obtain the model. After having selected a suitable
ROI, the reduced image is used as template image for the creation of the model.

3.7.3 Create a Suitable Descriptor Model

Having derived the template image from the reference image, the descriptor model can be created using

D
es

cr
ip

to
r-

ba
se

d

B-140 The Individual Approaches

• create_uncalib_descriptor_model for an uncalibrated descriptor-based matching or

• create_calib_descriptor_model for a calibrated descriptor-based matching.

Except for the camera parameters and the reference pose, which are needed only for the calibrated case,
the parameters that have to be adjusted are the same for both operators. Here, we will take a closer look
at how to adjust them. In particular, we show how to

• select and adjust the detector (section 3.7.3.1),

• adjust the descriptor (section 3.7.3.2), and

• specify the camera parameters and the reference pose that are needed for the calibrated matching
(section 3.7.3.3 on page 142).

Note that after the creation of the model, the model can still be modified. In section 3.7.3.4 on page 142
the possibilities for the inspection and modification of an already created model are shown.

3.7.3.1 Select and Adjust the Detector (DetectorType, DetectorParamName, Detector-

ParamValue)

The interest points that build the model are extracted from the image by the so-called detector. The
type of detector is selected via the parameter DetectorType. Available types are ’lepetit’, ’har-
ris’, and ’harris_binomial’, which correspond to the HALCON point operators points_lepetit,
points_harris, and points_harris_binomial. ’lepetit’ can be used for a very fast extraction of
significant points, but the obtained points are not as robust as those obtained with ’harris’. Especially,
if a template or search image is very dark or has got a low contrast, ’lepetit’ is not recommendend.
’harris_binomial’ is a good compromise between ’lepetit’ and ’harris’, because it is faster
than ’harris’ and more robust than ’lepetit’.

For each detector type a set of generic parameters is available that can be adjusted with the parame-
ters DetectorParamName and DetectorParamValue. The first one is used to specify the names of
the generic parameters and the second one is used to specify the corresponding values. We recom-
mend to apply tests with the selected point operator before creating the model. That is, you apply
the corresponding point operator to the template image and visualize the returned points using, e.g.,
gen_cross_contour_xld. For a good result, about 50 to 450 points should be uniformly distributed
within the template image. If you have found the appropriate parameter setting for the selected point
operator, you can set these parameters also for the model in create_calib_descriptor_model or
create_uncalib_descriptor_model, respectively. Note that in most cases the default values of the
detectors (DetectorParamName and DetectorParamValue set to []) are sufficient.

3.7.3.2 Adjust the Descriptor (DescriptorParamName, DescriptorParamValue)

The currently implemented descriptor uses randomized ferns to classify the extracted points, i.e., to build
characteristic descriptions of the location and the local gray value neighborhood for the interest points.

3.7 Descriptor-Based Matching B-141

The descriptor can be adjusted with the parameters DescriptorParamName and DescriptorParam-

Value. The first one is used to specify the names of the generic parameters that have to be adjusted and
the second one is used to specify the corresponding values.

The parameters can be devided into parameters that control the size of the descriptor and thus allow to
control the detection robustness, speed, and memory consumption, and in parameters that control the
simulation, especially the spatial range in which the model views are trained. The size of the descriptor
is controlled by the following parameters:

• ’depth’ specifies the depth of the classification fern. Interest points can better be discriminated
when selecting a higher depth. On the other hand, a higher depth leads to an increasing runtime.

• ’number_ferns’ specifies the number of used fern structures. Using many fern structures leads
to a better robustness but also to an increasing runtime.

• ’patch_size’ specifies the side length of the quadratic neighborhood that is used to describe the
individual interest point. Again, a too large value can disadvantageously influence the runtime.

The selection of values for the depth and the number of ferns depends on your specific requirements. If a
fast online matching is required, few ferns with a large depth are recommendend. If a robust matching
result is needed, many ferns are needed and a large depth may additionally increase the robustness,
although it might also significantly increase the runtime of the matching. If the memory consumption
is critical, many ferns with a small depth are recommended. For many applications, a trade-off between
the different requirements will be needed.

The simulation, i.e., the training of the model is controlled by the following parameters:

• ’tilt’ is used to switch ’on’ or ’off’ the projective transformations during the simulation
phase, which leads either to an enhanced robustness of the model or to a speed-up of the training.

• ’min_rot’ and ’max_rot’ define the range for the angle of rotation around the normal vector of
the model.

• ’min_scale’ and ’max_scale’ define the scale range of the model.

The restriction to small ranges for the angle of rotation and the scale can be used to speed up the training
significantly. But note that during the later applied matching the model can be found only if its angle
and scale is within the trained scope. Note further that the training is faster for small images. Thus, you
can speed up the training by selecting a small reference image and small template images and setting
’tilt’ to ’off’. Note also that the reference image and the search image should have the same size.

An example for the restriction of the orientation and scale of the model is given in the HDevelop example
program hdevelop\Applications\Object-Recognition-2D\detect_brochure_pages.hdev

that creates an uncalibrated descriptor model for the matching of different brochure pages. There, the
orientation is restricted to an angle range of +/- 90° (’default’ is +/- 180°) and the scale range is
changed to a scaling factor between 0.2 and 1.1 (’default’ is between 0.5 and 1.4).

create_uncalib_descriptor_model (ImageReduced, 'harris_binomial', [], \

[], ['min_rot','max_rot','min_scale', \

'max_scale'], [-90,90,0.2,1.1], 42, \

ModelID)

D
es

cr
ip

to
r-

ba
se

d

B-142 The Individual Approaches

3.7.3.3 Specify the Camera Parameters and the Reference Pose (CamParam, Reference-
Pose)

For a calibrated matching, additionally the camera parameters (CamParam) and a reference pose (Refer-
encePose) have to be specified. We recommend to obtain both using a camera calibration as described
in the Solution Guide III-C, section 3.2 on page 68. Other approaches for determining the pose of the
object plane comprise a manual measurement of the extents of the model, which is rather intricate and of-
ten inaccurate, stereo vision (see Solution Guide III-C, chapter 5 on page 139), or 3D laser triangulation,
e.g., using sheet of light (see Solution Guide III-C, chapter 6 on page 177).

3.7.3.4 Inspect and Modify the Descriptor Model

If you want to visually inspect an already created model, you can get the coordinates of the interest points
that are contained in it using get_descriptor_model_points with Set set to ’model’.

get_descriptor_model_points (ModelID, 'model', 'all', Row_D, Col_D)

To inspect the current parameter values of a model, you query them with
get_descriptor_model_params. This may be necessary if during the creation of the model
an automatic parameter selection was used or if the model was created within another program,
saved to file with write_descriptor_model, and read from this file in the current program with
read_descriptor_model. Additionally, you can query the coordinates of the origin of the model
using get_descriptor_model_origin.

After the creation of the model and before you search the object in a search image, you can further
modify the model. In particular, you can apply set_descriptor_model_origin to change its origin.
But note that this is not recommended because the accuracy of the matching result may decrease, which
is shown in more detail for shape-based matching in section 3.3.4.7 on page 85. For the case that you
nevertheless need to modify the point of reference and you want to apply a calibrated matching, we refer
to the corresponding description for perspective deformable matching in section 3.6.3.7 on page 131.
There, the relation between the reference pose, the model pose, and an offset that is manually applied to
the point of reference is introduced.

Note that after the matching, you can use get_descriptor_model_points also to query the interest
points of a specific match. Then, Set must be set to ’search’ instead of ’model’. Here, the interest
points of the first found model instance (index 0) are queried.

get_descriptor_model_points (ModelIDs[Index2], 'search', 0, Row, Col)

Additionally, after the matching, get_descriptor_model_results can be used to query selected nu-
merical results that were accumulated during the search like the scores for the correspondences between
the individual search points and model points (ResultNames set to ’point_classification’).

3.7.4 Optimize the Search Process

To locate the same interest points that are stored and described in the model in unknown images of the
same or a similar object, the following operators are applied:

3.7 Descriptor-Based Matching B-143

• find_calib_descriptor_model searches for the best matches of a calibrated descriptor model.
It returns the 3D pose of the object and the score describing the quality of the match.

• find_uncalib_descriptor_model searches for the best matches of an uncalibrated descriptor
model. It returns a 2D projective transformation matrix (homography) and the score describing
the quality of the match.

Except for the camera parameters (CamParam), the uncalibrated and the calibrated case need the same
parameters to be adjusted. Note that the camera parameters, assuming the same setup for the creation of
the model and the search, remain the same that were already specified (see section 3.7.3 on page 139). If
a different camera is used for the search, we recommend to apply a new camera calibration as described
in the Solution Guide III-C, section 3.2 on page 68. In the following, we show how to

• restrict the search space to a region of interest (section 3.7.4.1),

• adjust the detector for the search, which is recommended only in very rare cases (section 3.7.4.2),

• adjust the descriptor for the search (section 3.7.4.3),

• specify the similarity of the object by adjusting the parameter MinScore (section 3.7.4.4 on page
145),

• search for multiple instances of the object by adjusting the parameter NumMatches (section 3.7.4.5
on page 145), and

• select a score type by adjusting the parameter ScoreType (section 3.7.4.6 on page 145).

At the end of the matching, the model and further buffered data have to be cleared from memory with
clear_descriptor_model. If you want to reuse a model, you have to store it into a file before clearing
it from memory. Then, you can read it from file again as described in more detail in section 2.2 on page
28.

3.7.4.1 Restrict the Search to a Region of Interest

The obvious way to restrict the search space and thus speed up the matching is to apply the operator
find_uncalib_descriptor_model or find_calib_descriptor_model not to the whole image but
only to an ROI. The corresponding procedure is explained in more detail for shape-based matching in sec-
tion 3.3.4.1 on page 78. For descriptor-based matching you simply have to replace find_shape_model
by find_uncalib_descriptor_model or find_calib_descriptor_model, respectively.

3.7.4.2 Adjust the Detector for the Search (DetectorParamName, DetectorParamValue)

The parameters that control the detection, i.e., the extraction of the interest points from the image, are
adjusted via DetectorParamName and DetectorParamValue. They correspond to the detector param-
eters that were already specified during the creation of the model (see section 3.7.3 on page 139). In
most cases, they should not be changed for the search. That is, you simply pass an empty tuple ([]) to
the parameters.

D
es

cr
ip

to
r-

ba
se

d

B-144 The Individual Approaches

In rare cases, especially when there are significant illumination changes between the reference image
and the search image, you may change the parameter values. For example, if a search image is extremely
dark and ’lepetit’ was selected as detector, you can set ’min_score’ to a smaller value.

Generally, to test if it is necessary to change any of the parameter values, you can apply the point operator
that corresponds to the detector not only to the reference image, which was proposed for the creation of
the model (see also section 3.7.3.1 on page 140), but also to the search image. Again, about 50 to 450
uniformly distributed points should be extracted to get a good matching result. If the point operator
needs different parameters for the reference and the search image, it might be necessary to change the
values of the corresponding detector parameters accordingly.

3.7.4.3 Adjust the Descriptor for the Search (DescriptorParamName, DescriptorParam-
Value)

The parameters that control the determination of the correspondences between the interest points of the
search image and those of the model are adjusted via DescriptorParamName and DescriptorParam-

Value. Two generic parameters can be set:

• The parameter ’min_score_descr’ can be set to a value larger than 0.0 (but preferably below
0.1) to increase the minimal classification score that determines if the individual points are con-
sidered as potential matches. Thus, the number of points for further calculations is reduced, so
that the speed of the matching can be enhanced. But note that this speed-up is obtained at the cost
of a reduced robustness, especially if the number of extracted points is low.

• The parameter ’guided_matching’ can be switched off by setting it from ’on’ to ’off’. If
the guided matching is switched on, which is the default, the robustness of the estimation of
the model’s location is enhanced. In particular, points are extracted from the search image and
classified by the descriptor. The points that were accepted by the classification are used to calculate
an initial projective 2D (uncalibrated case) or homogeneous 3D (calibrated case) transformation
matrix. This is used then to project all model points into the search image. If a projected model
point is near to one of the originally extracted points, i.e., independently from its classification,
this point is used for the final calculation of the homography that is returned by the matching as 2D
projective transformation matrix or 3D pose, respectively. As typically without the classification
more points can be used for the calculations, the obtained homography is more robust. On the other
hand, in some cases the runtime of the matching may increase up to 10%. Thus, if robustness is
less important than speed, ’guided_matching’ can be switched off.

The HDevelop example program hdevelop\Applications\Object-Recognition-2D\

detect_brochure_pages.hdev is an example for setting ’min_score_descr’ to a higher
value (0.003) to speed up the matching. As the number of points in the images is large enough, the
matching is still sufficiently robust.

find_uncalib_descriptor_model (ImageGray, ModelIDs[Index2], \

'threshold', 800, \

['min_score_descr', \

'guided_matching'], [0.003,'on'], \

0.25, 1, 'num_points', HomMat2D, \

Score)

3.7 Descriptor-Based Matching B-145

3.7.4.4 Specify the Similarity of the Object (MinScore)

The parameter MinScore specifies the minimum score a potential match must have to be returned as
match. The score is a value for the quality of a match, i.e., for the correspondence, or “similarity”,
between the model and the search image. Note that for the descriptor-based matching, different types
of score are available for the output parameter Score (see section 3.7.4.6). But for the input parameter
MinScore, always the score of type ’inlier_ratio’ is used. It calculates the ratio of the number of
point correspondences to the number of model points. In most cases, MinScore should be set to a value
of at least 0.1. To speed up the search, it should be chosen as large as possible, but of course still as
small as necessary for the success of the search, as, e.g., a value of 1.0 is rather unlikely to be reached
by a matching.

3.7.4.5 Search for Multiple Instances of the Object (NumMatches)

All you have to do to search for more than one instance of the object is to set the parameter NumMatches
to the maximum number of instances you want to find. If you select the value 0, all matches are returned.

Locating more than one instance, the operators find_uncalib_descriptor_model and
find_calib_descriptor_model return the results for the individual model instances concate-
nated in the output tuples. That is, the Score, which is typically a single value for a single model
instance (see section 3.7.4.6 for exceptions), is now returned as a tuple for which the number of elements
corresponds to the number of found model instances. The number of elements for the projective
transformation matrix (HomMat2D) or the 3D pose (Pose), which are tuples already for a single model
instance, is the number of elements of the single instance multiplied by the number of found instances.
How to access the values for a specific match is shown in section 3.7.5.1. Note that a search for multiple
objects is only slightly slower than a search for a single object.

3.7.4.6 Select a Suitable Score Type (ScoreType)

The parameter ScoreType is used to select the type of score that will be returned in the parameter Score.
Available types are ’num_points’ and ’inlier_ratio’:

• For ’num_points’, the number of point correspondences per instance is returned. As any four
correspondences define a mathematically correct homography between two images, this number
should be at least 10 to assume a reliable matching result.

• For ’inlier_ratio’ the ratio of the number of point correspondences to the number of model
points is returned. Although this parameter may have a value between 0.0 and 1.0, a ratio of 1.0
is rather unlikely to be reached by a matching. Yet, objects having an inlier ratio of less than 0.1

should be disregarded.

Typically, one of both score types is selected, but it is also possible to pass both types in a tuple. Then,
the result for a single found model instance is returned in a tuple as well.

D
es

cr
ip

to
r-

ba
se

d

B-146 The Individual Approaches

3.7.5 Use the Specific Results of Descriptor-Based Matching

The descriptor-based matching returns for the uncalibrated case a 2D projective transformation matrix
(HomMat2D), for the calibrated case a 3D pose (Pose), and for both cases a score (Score) that evaluates
the quality of the returned object loacation. The 2D projective transformation matrix and the 3D pose
can be used, e.g., to transform a structure of the reference image into the search image as described in
section 2.4.5 on page 51 for the 2D projective transformation matrix and in section 2.4.6 on page 54 for
the 3D pose. The score can be interpreted as described in section 3.7.4.6. Similar to the shape-based
matching, descriptor-based matching can return multiple instances of a model. How to use these multiple
instances is shown in section 3.7.5.1.

3.7.5.1 Deal with Multiple Matches

If multiple instances of the object are searched and found, the results are concatenated in tuples. In
particular, Score, which is typically a single value for a single model instance (see section 3.7.4.6 on
page 145 for exceptions) is now a tuple for which the number of elements corresponds to the number
of found model instances. The access of the value for a specific instance is similar to the proceeding
described in section 3.3.4.5 on page 82 for shape-based matching.

The parameters HomMat2D or Pose are already returned as tuples for a single model instance. For
multiple instances, the values are simply concatenated. To access them for a specific match, you must
know the number of elements returned for a single model instance, which is nine for a single projective
transformation matrix and seven for a single 3D pose. Then, e.g., in the tuple returned for the 3D poses,
the first seven values belong to the first instance, the next seven values belong to the second instance,
etc. An example for the access of the values for each instance is described in more detail for calibrated
perspective deformable matching in section 3.6.4.5 on page 134.

Index B-147

Index

2D affine transformation, 35
2D projective transformation, 37
2D rigid transformation from points and angle,

35
2D transformation, 35
3D transformation, 38

access results of multiple matching model in-
stances (descriptor-based), 146

access results of multiple matching models (lo-
cal deformable), 124

access results of multiple matching models (per-
spective deformable), 135

adapt matching model (gray-value-based), 57
align image using shape-based matching, 46
align regions of interest using shape-based

matching, 42
allow orientation range for matching

(correlation-based), 61
allow orientation range for matching (local de-

formable), 118
allow orientation range for matching (perspec-

tive deformable), 129
allow orientation range for matching (shape-

based), 73

component-based matching
first example, 93
overview, 92

correlation-based matching (NCC)
first example, 59
overview, 58

create (train) matching model (component-
based), 97

create (train) matching model (correlation-
based), 61

create (train) matching model (descriptor-
based), 139

create (train) matching model (local de-
formable), 116

create (train) matching model (perspective de-
formable), 128

create (train) matching model (shape-based), 69
create matching model from DXF file, 27
create matching model from synthetic template,

24
create matching model from XLD contours, 25
create template, 20

descriptor-based matching
first example, 137
overview, 136

determine training parameters for matching
(correlation-based), 61

determine training parameters for matching (lo-
cal deformable), 116

determine training parameters for matching
(perspective deformable), 128

determine training parameters for matching
(shape-based), 69

display results of matching, 39

find matching model (component-based), 106
find matching model (correlation-based), 62
find matching model (descriptor-based), 142
find matching model (gray-value-based), 57
find matching model (local deformable), 119
find matching model (perspective deformable),

132
find matching model (shape-based), 77
find matching model with perspective distor-

tion, 91
find model for matching, 19
find multiple matching models (shape-based),

83
find multiple model instances (component-

based), 108

In
de

x

B-148 Index

find multiple model instances (correlation-
based), 63

find multiple model instances (descriptor-
based), 145

find multiple model instances (local de-
formable), 120

find multiple model instances (perspective de-
formable), 134

find multiple model instances (shape-based), 82

get found matching model components, 93, 110
get initial components of matching model, 96
get matching model contours (local de-

formable), 119
get matching model origin (correlation-based),

62
get matching model origin (descriptor-based),

142
get matching model origin (perspective de-

formable), 131
get matching model origin (shape-based), 77
get matching model parameters (component-

based), 106
get matching model parameters (descriptor-

based), 142
get matching model parameters (local de-

formable), 119
get matching model parameters (perspective de-

formable), 131
get multiple model results of matching (shape-

based), 90
get multiple results of matching (shape-based),

89
gray-value-based matching, 57

inspect matching model (component-based),
106

inspect matching model (correlation-based), 62
inspect matching model (descriptor-based), 142
inspect matching model (local deformable), 119
inspect matching model (perspective de-

formable), 131
inspect matching model (shape-based), 77

local deformable matching
first example, 112
overview, 111

matching approaches, 57
matching model contours (perspective de-

formable), 131
matching model contours (shape-based), 77
matching model parameters (correlation-

based), 62
matching model parameters (shape-based), 77
matching model points (descriptor-based), 142
model creation (training), 19

perspective deformable matching, 124, 125

re-use matching model (component-based), 105
re-use matching model (correlation-based), 62
re-use matching model (descriptor-based), 142
re-use matching model (gray-value-based), 57
re-use matching model (local deformable), 119
re-use matching model (perspective de-

formable), 131
re-use matching model (shape-based), 77
re-use model, 28
read matching model (component-based), 105
read matching model (correlation-based), 62
read matching model (descriptor-based), 142
read matching model (gray-value-based), 57
read matching model (local deformable), 119
read matching model (perspective deformable),

131
read matching model (shape-based), 77
rectify image for matching (shape-based) to

adapt to new camera orientation, 91
reference point for matching, 21
region of interest from matching model, 22
region of interest from matching model (shape-

based), 67
restrict orientation range for matching

(component-based), 107
restrict orientation range for matching

(correlation-based), 63
restrict orientation range for matching (local de-

formable), 120
restrict orientation range for matching (perspec-

tive deformable), 133
restrict orientation range for matching (shape-

based), 79
results of matching, 33, 34
root component (component-based), 107
rotate 2D homogeneous matrix, 35

Index B-149

scale 2D homogeneous matrix, 35
score, 56
select score type for matching (descriptor-

based), 145
select suitable matching approach, 9
set camera parameters for matching (descriptor-

based), 142
set camera parameters for matching (perspec-

tive deformable), 131
set generic parameters (local deformable), 118
set generic parameters (perspective de-

formable), 130
set generic parameters for speedup (local de-

formable), 121
set generic parameters for speedup (perspective

deformable), 135
set matching model metric (correlation-based),

62
set matching model metric (local deformable),

118
set matching model metric (perspective de-

formable), 130
set matching model metric (shape-based), 75
set matching model origin (correlation-based),

62
set matching model origin (descriptor-based),

142
set matching model origin (gray-value-based),

57
set matching model origin (local deformable),

119
set matching model origin (shape-based), 77
set matching model parameters (correlation-

based), 64
set matching model parameters (shape-based),

87
set number of pyramid levels for matching

(correlation-based), 64
set number of pyramid levels for matching (lo-

cal deformable), 121
set number of pyramid levels for matching (per-

spective deformable), 134
set number of pyramid levels for matching

(shape-based), 86
set threshold to extract matching model (local

deformable), 117
set threshold to extract matching model (per-

spective deformable), 129
set threshold to extract matching model (shape-

based), 71
set training model origin (perspective de-

formable), 131
shape-based matching

first example, 65
overview, 64

specify accuracy for matching (correlation-
based), 63

specify accuracy for matching (shape-based),
85

specify iconic objects for matching (local de-
formable), 121

specify object similarity for matching
(correlation-based), 63

specify object similarity for matching
(descriptor-based), 145

specify object visibility for matching, 80
specify object visibility for matching

(component-based), 108
specify object visibility for matching (local de-

formable), 120
specify object visibility for matching (perspec-

tive deformable), 134
speed up matching, 30
speed up matching (local deformable), 120
speed up matching (perspective deformable),

134
speed up matching (shape-based), 81, 87
speed up matching with subsampling, 30
speed up matching with subsampling

(correlation-based), 61
speed up matching with subsampling (local de-

formable), 117
speed up matching with subsampling (perspec-

tive deformable), 129
speed up matching with subsampling (shape-

based), 72

timeout for matching (correlation-based), 64
timeout for matching (shape-based), 87
translate 2D homogeneous matrix, 35

use 2D pose (position, orientation) result of
matching, 39

use 3D pose result of template matching, 54
use deformed contours (local deformable), 123

In
de

x

B-150 Index

use homography results of matching, 51
use rectified image (local deformable), 122
use region of interest, 30
use region of interest for matching (component-

based), 107
use region of interest for matching (correlation-

based), 60, 63
use region of interest for matching (descriptor-

based), 139, 143
use region of interest for matching (local de-

formable), 116, 120
use region of interest for matching (perspective

deformable), 127, 133
use region of interest for matching (shape-

based), 78
use results of matching (component-based), 110
use results of matching (descriptor-based), 146
use results of matching (local deformable), 122
use results of matching (perspective de-

formable), 135
use results of matching (shape-based), 89
use scale result of matching, 49
use synthetic model for matching, 23
use vector field (local deformable), 122

write matching model (component-based), 105
write matching model (correlation-based), 62
write matching model (descriptor-based), 142
write matching model (gray-value-based), 57
write matching model (local deformable), 119
write matching model (perspective de-

formable), 131
write matching model (shape-based), 77

	1 Introduction
	1.1 How to Use This Manual?
	1.2 What is Matching?
	1.3 How to Generally Apply a Matching?
	1.4 Which Approaches are Available?
	1.5 Which Approach is Suitable in Which Situation?
	1.5.1 The Matching Approaches: 2D versus 3D
	1.5.2 Decisions for 3D Objects and 2D Objects in 3D Space
	1.5.3 First Decisions for Orthogonally Imaged 2D Objects
	1.5.4 Shape-Based vs. Correlation-Based Matching
	1.5.5 Quick Guide to the Matching Approaches

	2 General Topics
	2.1 Prepare the Template
	2.1.1 Reduce the Reference Image to a Template Image
	2.1.2 Influence of the Region of Interest
	2.1.3 Synthetic Models as Alternatives to Template Images

	2.2 Reuse the Model
	2.3 Speed Up the Search
	2.3.1 Restrict the Search Space
	2.3.2 About Subsampling

	2.4 Use the Results of Matching
	2.4.1 Results of the Individual Matching Approaches
	2.4.2 About Transformations
	2.4.3 Use the Estimated 2D Position and Orientation
	2.4.4 Use the Estimated 2D Scale
	2.4.5 Use the Estimated 2D Homography
	2.4.6 Use the Estimated 3D Pose
	2.4.7 About the Score

	3 The Individual Approaches
	3.1 Gray-Value-Based Matching
	3.2 Correlation-Based Matching
	3.2.1 A First Example
	3.2.2 Select the Model ROI
	3.2.3 Create a Suitable NCC Model
	3.2.4 Optimize the Search Process

	3.3 Shape-Based Matching
	3.3.1 A First Example
	3.3.2 Select the Model ROI
	3.3.3 Create a Suitable Shape Model
	3.3.4 Optimize the Search Process
	3.3.5 Use the Specific Results of Shape-Based Matching
	3.3.6 Adapt to a Changed Camera Orientation

	3.4 Component-Based Matching
	3.4.1 A First Example
	3.4.2 Extract the Initial Components
	3.4.3 Create a Suitable Component Model
	3.4.4 Search for Model Instances
	3.4.5 Use the Specific Results of Component-Based Matching

	3.5 Local Deformable Matching
	3.5.1 A First Example
	3.5.2 Select the Model ROI
	3.5.3 Create a Suitable Local Deformable Model
	3.5.4 Optimize the Search Process
	3.5.5 Use the Specific Results of Local Deformable Matching

	3.6 Perspective Deformable Matching
	3.6.1 A First Example
	3.6.2 Select the Model ROI
	3.6.3 Create a Suitable Perspective Deformable Model
	3.6.4 Optimize the Search Process
	3.6.5 Use the Specific Results of Perspective Deformable Matching

	3.7 Descriptor-Based Matching
	3.7.1 A First Example
	3.7.2 Select the Model ROI
	3.7.3 Create a Suitable Descriptor Model
	3.7.4 Optimize the Search Process
	3.7.5 Use the Specific Results of Descriptor-Based Matching

	Index

